Chapter 1

LINEAR EQUATIONS

1.1 Introduction to linear equations

A linear equation in n unknowns x_1, x_2, \dots, x_n is an equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b,$$

where a_1, a_2, \ldots, a_n, b are given real numbers.

For example, with x and y instead of x_1 and x_2 , the linear equation 2x + 3y = 6 describes the line passing through the points (3, 0) and (0, 2).

Similarly, with x, y and z instead of x_1, x_2 and x_3 , the linear equation 2x + 3y + 4z = 12 describes the plane passing through the points (6, 0, 0), (0, 4, 0), (0, 0, 3).

A system of m linear equations in n unknowns x_1, x_2, \dots, x_n is a family of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

We wish to determine if such a system has a solution, that is to find out if there exist numbers x_1, x_2, \dots, x_n which satisfy each of the equations simultaneously. We say that the system is *consistent* if it has a solution. Otherwise the system is called *inconsistent*. Note that the above system can be written concisely as

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, 2, \cdots, m.$$

The matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is called the *coefficient matrix* of the system, while the matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

is called the *augmented matrix* of the system.

Geometrically, solving a system of linear equations in two (or three) unknowns is equivalent to determining whether or not a family of lines (or planes) has a common point of intersection.

EXAMPLE 1.1.1 Solve the equation

2x + 3y = 6.

Solution. The equation 2x + 3y = 6 is equivalent to 2x = 6 - 3y or $x = 3 - \frac{3}{2}y$, where y is arbitrary. So there are infinitely many solutions.

EXAMPLE 1.1.2 Solve the system

$$\begin{array}{rcl} x+y+z &=& 1\\ x-y+z &=& 0. \end{array}$$

Solution. We subtract the second equation from the first, to get 2y = 1 and $y = \frac{1}{2}$. Then $x = y - z = \frac{1}{2} - z$, where z is arbitrary. Again there are infinitely many solutions.

EXAMPLE 1.1.3 Find a polynomial of the form $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ which passes through the points (-3, -2), (-1, 2), (1, 5), (2, 1).