Foreword

There has been an ongoing debate on how best to document a software system
ever since the first software system was built. Some would have us writing nat-
ural language descriptions, some would have us prepare formal specifications,
others would have us producing design documents and others would want us
to describe the software thru test cases. There are even those who would have
us do all four, writing natural language documents, writing formal specifica-
tions, producing standard design documents and producing interpretable test
cases all in addition to developing and maintaining the code. The problem
with this is that whatever is produced in the way of documentation becomes
in a short time useless, unless it is maintained parallel to the code. Maintain-
ing alternate views of complex systems becomes very expensive and highly
error prone. The views tend to drift apart and become inconsistent.

The authors of this book provide a simple solution to this perennial prob-
lem. Only the source code is maintained and evolved. All of the other infor-
mation required on the system is taken from the source code. This entails
generating a complete set of UML diagrams from the source. In this way, the
design documentation will always reflect the real system as it is and not the
way the system should be from the viewpoint of the documentor. There can
be no inconsistency between design and implementation. The method used is
that of reverse engineering, the target of the method is object oriented code in
C++, C#, or Java. From the code class diagrams, object diagrams, interac-
tion diagrams and state diagrams are generated in accordance with the latest
UML standard. Since the method is automated, there are no additional costs.
Design documentation is provided at the click of a button.

This approach, the result of many years of research and development, will
have a profound impact upon the way IT-systems are documented. Besides
the source code itself, only one other view of the system needs to be developed
and maintained, that is the user view in the form of a domain specific lan-
guage. Each application domain will have to come up with it’s own language
to describe applications from the view point of the user. These languages may
range from natural languages to set theory to formal mathematical notations.



XII Foreword

What these languages will not describe is how the system is or should be con-
structed. This is the purpose of UML as a modeling language. The techniques
described in this book demonstrate that this design documentation can and
should be extracted from the code, since this is the cheapest and most reliable
means of achieving this end. There may be some UML documents produced
on the way to the code, but since complex IT systems are almost always de-
veloped by trial and error, these documents will only have a transitive nature.
The moment the code exists they are both obsolete and superfluous. From
then on, the same documents can be produced cheaper and better from the
code itself. This approach coincides with and supports the practice of extreme
programming.

Of course there are several drawbacks, as some types of information are
not captured in the code and, therefore, reverse engineering cannot capture
them. An example is that there still needs to be a test oracle — something to
test against. This something is the domain specific specification from which
the application-oriented test cases are derived. The technical test cases can
be derived from the generated UML diagrams. In this way, the system as
implemented will be verified against the system as specified. Without the
UML diagrams, extracted from the code, there would be no adequate basis of
comparison.

For these and other reasons, this book is highly recommendable to all
who are developing and maintaining Object-Oriented software systems. They
should be aware of the possibilities and limitations of automated post docu-
mentation. It will become increasing significant in the years to come, as the
current generation of OO-systems become the legacy systems of the future.
The implementation knowledge they encompass will most likely be only in the
source and there will be no other means of regaining it other than through
reverse engineering.

Trento, Italy, July 2004 Harry Sneed
Benevento, Italy, July 2004 Aniello Cimitile





