
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introducing Component-Oriented
Programming

Over the last decade, component-oriented programming has established itself as the
predominant software development methodology. The software industry is moving
away from giant, monolithic, hard-to-maintain code bases. Practitioners have discov-
ered that by breaking a system down into binary components, they can attain much
greater reusability, extensibility, and maintainability. These benefits can, in turn,
lead to faster time to market, more robust and highly scalable applications, and
lower development and long-term maintenance costs. Consequently, it’s no coinci-
dence that component-oriented programming has caught on in a big way.

Several component technologies, such as DCOM, CORBA, and Java Beans now give
programmers the means to implement component-oriented applications. However,
each technology has its drawbacks; for example, DCOM is too difficult to master,
and Java doesn’t support interoperation with other languages.

.NET is the newest entrant, and as you will see later in this chapter and in the rest of
the book, it addresses the requirements of component-oriented programming in a
way that is unique and vastly easier to use. This is little surprise because the .NET
architects learned from the mistakes of previous technologies, as well as from their
successes.

In this chapter, I’ll define the basic terms of component-oriented programming and
summarize the core principles and corresponding benefits of component-oriented
programming. These principles apply throughout the book, and I’ll refer to them in
later chapters when describing the motivation for a particular .NET design pattern.
Component-oriented programming is different from object-oriented programming,
although the two methodologies have things in common. You could say that compo-
nent-oriented programming sprouted from the well of object-oriented programming
methodologies. Therefore, this chapter also contrasts component-oriented program-
ming and object-oriented programming, and briefly discusses .NET as a component
technology.




