
Chapter One

Complex Numbers

1.1 Introduction. Let us hark back to the first grade when the only numbers you knew
were the ordinary everyday integers. You had no trouble solving problems in which you
were, for instance, asked to find a number x such that 3x  6. You were quick to answer
”2”. Then, in the second grade, Miss Holt asked you to find a number x such that 3x  8.
You were stumped—there was no such ”number”! You perhaps explained to Miss Holt that
32  6 and 33  9, and since 8 is between 6 and 9, you would somehow need a number
between 2 and 3, but there isn’t any such number. Thus were you introduced to ”fractions.”

These fractions, or rational numbers, were defined by Miss Holt to be ordered pairs of
integers—thus, for instance, 8,3 is a rational number. Two rational numbers n,m and
p,q were defined to be equal whenever nq  pm. (More precisely, in other words, a
rational number is an equivalence class of ordered pairs, etc.) Recall that the arithmetic of
these pairs was then introduced: the sum of n,m and p,q was defined by

n,m  p,q  nq  pm,mq,

and the product by

n,mp,q  np,mq.

Subtraction and division were defined, as usual, simply as the inverses of the two
operations.

In the second grade, you probably felt at first like you had thrown away the familiar
integers and were starting over. But no. You noticed that n, 1  p, 1  n  p, 1 and
also n, 1p, 1  np, 1. Thus the set of all rational numbers whose second coordinate is
one behave just like the integers. If we simply abbreviate the rational number n, 1 by n,
there is absolutely no danger of confusion: 2  3  5 stands for 2,1  3,1  5,1. The
equation 3x  8 that started this all may then be interpreted as shorthand for the equation
3,1u,v  8,1, and one easily verifies that x  u,v  8,3 is a solution. Now, if
someone runs at you in the night and hands you a note with 5 written on it, you do not
know whether this is simply the integer 5 or whether it is shorthand for the rational number
5,1. What we see is that it really doesn’t matter. What we have ”really” done is
expanded the collection of integers to the collection of rational numbers. In other words,
we can think of the set of all rational numbers as including the integers–they are simply the
rationals with second coordinate 1.

One last observation about rational numbers. It is, as everyone must know, traditional to
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write the ordered pair n,m as n
m . Thus n stands simply for the rational number n

1 , etc.

Now why have we spent this time on something everyone learned in the second grade?
Because this is almost a paradigm for what we do in constructing or defining the so-called
complex numbers. Watch.

Euclid showed us there is no rational solution to the equation x2  2. We were thus led to
defining even more new numbers, the so-called real numbers, which, of course, include the
rationals. This is hard, and you likely did not see it done in elementary school, but we shall
assume you know all about it and move along to the equation x2  1. Now we define
complex numbers. These are simply ordered pairs x,y of real numbers, just as the
rationals are ordered pairs of integers. Two complex numbers are equal only when there
are actually the same–that is x,y  u,v precisely when x  u and y  v. We define the
sum and product of two complex numbers:

x,y  u,v  x  u,y  v

and
x,yu,v  xu  yv,xv  yu

As always, subtraction and division are the inverses of these operations.

Now let’s consider the arithmetic of the complex numbers with second coordinate 0:

x, 0  u, 0  x  u, 0,

and
x, 0u, 0  xu, 0.

Note that what happens is completely analogous to what happens with rationals with
second coordinate 1. We simply use x as an abbreviation for x, 0 and there is no danger of
confusion: x  u is short-hand for x, 0  u, 0  x  u, 0 and xu is short-hand for
x, 0u, 0. We see that our new complex numbers include a copy of the real numbers, just
as the rational numbers include a copy of the integers.

Next, notice that xu,v  u,vx  x, 0u,v  xu,xv. Now then, any complex number
z  x,y may be written
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z  x,y  x, 0  0,y
 x  y0,1

When we let   0,1, then we have

z  x,y  x  y

Now, suppose z  x,y  x  y and w  u,v  u  v. Then we have

zw  x  yu  v
 xu  xv  yu  2yv

We need only see what 2 is: 2  0,10,1  1,0, and we have agreed that we can
safely abbreviate 1,0 as 1. Thus, 2  1, and so

zw  xu  yv  xv  yu

and we have reduced the fairly complicated definition of complex arithmetic simply to
ordinary real arithmetic together with the fact that 2  1.

Let’s take a look at division–the inverse of multiplication. Thus z
w stands for that complex

number you must multiply w by in order to get z . An example:

z
w  x  y

u  v  x  y
u  v 

u  v
u  v

 xu  yv  yu  xv
u2  v2

 xu  yv
u2  v2

  yu  xv
u2  v2

Note this is just fine except when u2  v2  0; that is, when u  v  0. We may thus divide
by any complex number except 0  0,0.

One final note in all this. Almost everyone in the world except an electrical engineer uses
the letter i to denote the complex number we have called . We shall accordingly use i
rather than  to stand for the number 0,1.

Exercises
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1. Find the following complex numbers in the form x  iy:
a) 4  7i2  3i b) 1  i3

b) 52i
1i c) 1

i

2. Find all complex z  x,y such that
z2  z  1  0

3. Prove that if wz  0, then w  0 or z  0.

1.2. Geometry. We now have this collection of all ordered pairs of real numbers, and so
there is an uncontrollable urge to plot them on the usual coordinate axes. We see at once
then there is a one-to-one correspondence between the complex numbers and the points in
the plane. In the usual way, we can think of the sum of two complex numbers, the point in
the plane corresponding to z  w is the diagonal of the parallelogram having z and w as
sides:

We shall postpone until the next section the geometric interpretation of the product of two
complex numbers.

The modulus of a complex number z  x  iy is defined to be the nonnegative real number
x2  y2 , which is, of course, the length of the vector interpretation of z. This modulus is
traditionally denoted |z|, and is sometimes called the length of z. Note that
|x, 0|  x2  |x|, and so || is an excellent choice of notation for the modulus.

The conjugate z of a complex number z  x  iy is defined by z  x  iy. Thus |z|2  z z .
Geometrically, the conjugate of z is simply the reflection of z in the horizontal axis:
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Observe that if z  x  iy and w  u  iv, then

z  w  x  u  iy  v
 x  iy  u  iv
 z  w.

In other words, the conjugate of the sum is the sum of the conjugates. It is also true that
zw  z w. If z  x  iy, then x is called the real part of z, and y is called the imaginary
part of z. These are usually denoted Re z and Im z, respectively. Observe then that
z  z  2Re z and z  z  2Im z.

Now, for any two complex numbers z and w consider

|z  w|2  z  wz  w  z  w z  w
 z z  w z  wz  ww
 |z|2  2Rew z   |w|2

 |z|2  2|z||w|  |w|2  |z|  |w|2

In other words,

|z  w|  |z|  |w|
the so-called triangle inequality. (This inequality is an obvious geometric fact–can you
guess why it is called the triangle inequality?)

Exercises

4. a)Prove that for any two complex numbers, zw  z w.
b)Prove that  zw   z

w .
c)Prove that ||z|  |w||  |z  w|.

5. Prove that |zw|  |z||w| and that | zw | 
|z|
|w | .
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6. Sketch the set of points satisfying
a) |z  2  3i|  2 b)|z  2i|  1
c) Re z  i  4 d) |z  1  2i|  |z  3  i|
e)|z  1|  |z  1|  4 f) |z  1|  |z  1|  4

1.3. Polar coordinates. Now let’s look at polar coordinates r, of complex numbers.
Then we may write z  rcos  i sin. In complex analysis, we do not allow r to be
negative; thus r is simply the modulus of z. The number  is called an argument of z, and
there are, of course, many different possibilities for . Thus a complex numbers has an
infinite number of arguments, any two of which differ by an integral multiple of 2. We
usually write   arg z. The principal argument of z is the unique argument that lies on
the interval ,.

Example. For 1  i, we have

1  i  2 cos 7
4  i sin 7

4 

 2 cos  4  i sin  4 

 2 cos 399
4  i sin 399

4 

etc., etc., etc. Each of the numbers 7
4 , 


4 , and

399
4 is an argument of 1  i, but the

principal argument is  
4 .

Suppose z  rcos  i sin and w  scos  i sin. Then
zw  rcos  i sinscos  i sin

 rscoscos  sin sin  isincos  sincos
 rscos    i sin  

We have the nice result that the product of two complex numbers is the complex number
whose modulus is the product of the moduli of the two factors and an argument is the sum
of arguments of the factors. A picture:
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We now define expi, or ei by
ei  cos  i sin

We shall see later as the drama of the term unfolds that this very suggestive notation is an
excellent choice. Now, we have in polar form

z  rei,

where r  |z| and  is any argument of z. Observe we have just shown that

eiei  ei.

It follows from this that eiei  1. Thus

1
ei

 ei

It is easy to see that

z
w  rei

sei
 r
s cos    i sin  

Exercises

7. Write in polar form rei:
a) i b) 1  i
c) 2 d) 3i
e) 3  3i

8.Write in rectangular form—no decimal approximations, no trig functions:
a) 2ei3 b) ei100
c) 10ei/6 d) 2 ei5/4

9. a) Find a polar form of 1  i1  i 3 .
b) Use the result of a) to find cos 7

12 and sin 7
12 .

10. Find the rectangular form of 1  i100.
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11. Find all z such that z3  1. (Again, rectangular form, no trig functions.)

12. Find all z such that z4  16i. (Rectangular form, etc.)
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