
Preface
Chances are, you've seen the acronym PEAR at some point in your use of PHP,
whether it was in passing or when installing and using a package from pear.php.
net. If you've investigated, you've probably heard of popular software provided
by PEAR, such as the DB database abstraction package, or the HTML_QuickForm
package. What you may not realize is that PEAR is much more than just a collection
of packages that you can use. PEAR also contains the most versatile installation
program for PHP, the PEAR installer.

With the PEAR installer, you can do much more than just install packages from
pear.php.net. You can install packages from other PEAR channels, distribute your
own software projects using your own PEAR channel, and even maintain a complex
web project, all using the PEAR installer. Surprised? Well read on, as this book
reveals the intimate secrets of the PEAR installer and how it will revolutionize your
everyday development with the PHP programming language!

What This Book Covers
Chapter 1 introduces you to the PEAR installer. We begin with a look at theyou to the PEAR installer. We begin with a look at the
traditional unzip-and-go method of distributing PHP software and compare its
advantages and disadvantages to the PEAR installer's package-based method of
distributing PHP software. You will see the innovation of PEAR channels, take a
peek inside how the PEAR installer installs files from packages, and learn how it
knows where to install them. Finally, you will see the many ways to acquire the
PEAR installer and even how to install PEAR remotely onto a web host that does not
provide shell access.

Chapter 2 is a must-read for all PHP developers, as it explains the basic workings
of package.xml, the heart of the PEAR installer. package.xml is used to control
almost everything the PEAR installer can do. You will learn about the importanceYou will learn about the importance
of versioning in controlling the quality of packages installed, the importance of

Preface

[2]

dependencies, and how the PEAR installer manages this important link between
libraries and applications. You will also learn how package.xml organizes package
metadata such as the package name, authors, release notes, and changelog, and has
critical installation data such as files, dependencies, and versioning organized.

Chapter 3 goes further in depth for developers who want to take advantage of the full
application-support features introduced in package.xml version 2.0.

Chapter 4 takes a break from looking at the details of the PEAR installer, and dives
into using the PEAR installer to develop and to maintain a complicated and rapidly
evolving website.

Chapter 5 covers PEAR channels. Channels are designed to make it easy to install
packages from any location, but difficult to compromise your system in the process,
following a basic security principle: always design things so that the easiest way to
do them is the most secure.

Channels open up pear.php.net's monopoly over the PEAR installer to the entire
Internet. Custom-built packages distributed through your channel can even be
sold and made available to specific users while co-existing peacefully with publicly
available open-source packages.

Chapter 6 teaches you how to embed the PEAR installer to create a plug-in manager.how to embed the PEAR installer to create a plug-in manager.
The chapter creates a fake blog application that provides the ability to seamlessly
query a remote PEAR channel server designed to distribute templates. Using
the internal classes of the PEAR installer, our blog web application intelligently
installs and upgrades templates with all of the sophistication expected from the
PEAR installer.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Next, you
need to create a configuration file for the remote machine using the config-create
command."

A block of code will be set as follows:

<file name="blah.php" role="php">
 <tasks:replace from="@DATABASE-URL@" to="database_url"
 type="pear-config" />
</file>

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

if (is_object($infoplugin)) {
 $bag = new serendipity_property_bag;
 $infoplugin->introspect($bag);
 if ($bag->get('version') == $data['version']) {
 $installable = false;
 } elseif (version_compare($bag->get('version'),
 $data['version'], '<')) {
 $data['upgradable'] = true;
 $data['upgrade_version'] = $data['version'];
 $data['version'] = $bag->get('version');

Any command-line input and output is written as follows:

$ pear –c pear.ini remote-install –o DB_DataObject

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

	The PEAR Installer Manifesto
	Table of Contents
	Preface
	Chapter 1: Acquiring PEAR: What is it and How do I Get it?
	A Democratic Innovation for PHP: PEAR Channels
	What is PEAR? A Code Repository or an Installer?
	PEAR Package Repository and PEAR Channel
	PEAR Installer

	Installing the PEAR Installer
	PEAR Bundled with PHP
	Installation for PHP Versions Older Than 5.1.0
	Other Unofficial Sources

	Synchronizing to a Server with no Shell Access Using PEAR_RemoteInstaller
	Summary

	Chapter 2: Mastering PHP Software Management with the PEAR Installer
	Distributing Libraries and Applications
	Differences between Libraries and Applications from the Installer's Point of View

	Using Versioning and Dependencies to Help Track and Eliminate Bugs
	Versioning
	PEAR Packaging and Strict Version Validation
	Enterprise-Level Dependency Management

	Distribution and Upgrades for the End User
	An Overview of package.xml Structure
	Tags Shared between package.xml 1.0 and 2.0
	Package Metadata
	Package Name/Channel
	Maintainers (Authors)
	Package Description and Summary

	Basic Release Metadata
	Package Version
	Package Stability
	External Dependencies
	Release Notes
	Release License
	Changelog
	File List, or Contents of the Package

	New Tags in package.xml
	File/Directory Attributes: name, role and baseinstalldir
	Summary

	Chapter 3: Leveraging Full Application Support with the PEAR Installer
	package.xml Version 2.0: Your Sexy New Friend
	PEAR Channels: A Revolution in PHP Installation
	Application Support
	Introduction to Custom File Roles
	Creating the PEAR_Installer_Role_Chiaramdb2schema Custom Role
	Full Range of Possible Custom File Roles

	Introduction to Custom File Tasks
	Creating the PEAR_Task_Chiara_Managedb Custom Task
	The Full Range of Possible Custom File Tasks

	Post-Installation Scripts for Ultimate Customization

	Bundling Several Packages into a Single Archive
	Backwards Compatibility: Using package.xml 1.0 and 2.0
	Why Support Old and Crusty package.xml 1.0?
	Case Study: The PEAR Package
	PEAR_PackageFileManager
	Obtaining PEAR_PackageFileManager
	PEAR_PackageFileManager Script and the package.xml Files it Generates
	How PEAR_PackageFileManager Makes a Hard Life Easy
	Globbing Files for package.xml
	Managing Changelog
	Synchronizing package.xml Version 1.0 and package.xml Version 2.0

	Creating a Package for Installation with the PEAR Installer
	Summary

	Chapter 4: Clever Website Coordination Using the PEAR Installer
	Overview of the Problem
	Understanding the Problem
	Managing Code Breakage and Reverting to Previous Versions
	Managing Missing or Extraneous Files
	Coordinating Development with a Team of Developers
	Backing Up Code: Redundancy as a Necessary Precaution

	The Solution, Part I: All-Important Source Control
	Providing Redundancy and Revision History
	Installing CVS or Subversion
	Concurrent Versions System
	Subversion

	Intelligent Source Control
	Maintaining Branches for Complex Versioning Support
	Using Tags to Mark Point Releases

	The Solution, Part II: Using the PEAR Installer to Update the Website
	Generating package.xml from the Source Control Checkout
	Packaging: Coordinating Release Versions with Tags and Branches
	Testing the Release before Uploading
	Upgrading the Live Server
	Using the pear upgrade Command
	The Real Beauty of Using Pear to Fix Problems

	Summary

	Chapter 5: Releasing to the World: PEAR Channels
	Distributing a package.xml-Based Package
	Distributing Packages through a Channel Server
	The channel.xml File
	channel.xml Tag Summary
	Obtaining Chiara_PEAR_Server
	Configuring the Server; Obtaining a Front End for End Users
	Adding a Package and Releasing Packages
	Installing a Public Channel Front End

	Distributing Pay-For-Use PHP Applications through a Channel
	Distributing Packages through Static tarballs for Single-Client Installations
	Who Needs this Feature?
	Differences in package.xml and Dependencies
	Releasing Equals Uploading

	Security Issues Inherent in Remote Installation
	How do PEAR Installer and Chiara_PEAR_Server Provide Security?
	Extra Security beyond what PEAR Provides
	Specific Security Principles Applied in Designing the PEAR Installer and Chiara_PEAR_Server

	Summary

	Chapter 6: Embedding the PEAR Installer: Designing a Custom Plug-In System
	Why Embed PEAR?
	Simplify User Choices for Installation
	Eliminate Chance for Error

	Other Plug-In Systems
	Bundling Plug-Ins Directly in the Source Code
	Subpackages – PEAR Dependencies
	Case Study: MDB2

	Custom Plug-In Systems: Remote Server
	Case Study: Serendipity Blog's Spartacus Plug-In Manager
	Case Study: Seagull Framework's Embedded PEAR Installer

	Designing a Custom PEAR Channel-Based Plug-In System
	Reusing Existing Functionality
	PEAR Installer Infrastructure: REST, PEAR Installer Classes

	Extending REST with Custom Information
	Designing a Lightweight Installer Plug-In: The Code At Last
	MyBlog_Template_IConfig and MyBlog_Template_Config
	MyBlog_Template_REST
	MyBlog_Template_Lister
	MyBlog_Template_Fetcher
	The MyBlog Post-Install Script
	The Rest of the Fake MyBlog Package
	Improvements for the Ambitious

	Summary

	Index

