
Table of Contents
Preface	 1
Chapter 1: Acquiring PEAR: What is it and How do I Get It?	 5

A Democratic Innovation for PHP: PEAR Channels	 8
What is PEAR? A Code Repository or an Installer?	 9

PEAR Package Repository and PEAR Channel	 9
PEAR Installer	 10

Installing the PEAR Installer	 12
PEAR Bundled with PHP	 12
Installation for PHP Versions Older than 5.1.0	 15
Other Unofficial Sources	 17

Synchronizing to a Server with no Shell Access Using
PEAR_RemoteInstaller	 18
Summary	 22

Chapter 2: Mastering PHP Software Management with the
PEAR Installer	 23

Distributing Libraries and Applications	 25
Differences between Libraries and Applications from the
Installer's Point of View	 26

Using Versioning and Dependencies to Help Track and Eliminate Bugs	 27
Versioning	 27
PEAR Packaging and Strict Version Validation	 29
Enterprise-Level Dependency Management	 32

Distribution and Upgrades for the End User	 34
An Overview of package.xml Structure	 36
Tags Shared between package.xml 1.0 and 2.0	 44

Package Metadata	 44
Package Name/Channel	 45
Maintainers (Authors)	 46
Package Description and Summary	 47

Table of Contents

[ii]

Basic Release Metadata	 48
Package Version	 48
Package Stability	 49
External Dependencies	 51
Release Notes	 58
Release License	 58
Changelog	 58
File List, or Contents of the Package	 59

New Tags in package.xml	 60
File/Directory Attributes: name, role, and baseinstalldir	 63
Summary	 66

Chapter 3: Leveraging Full Application Support with the
PEAR Installer	 69

package.xml Version 2.0: Your Sexy New Friend	 69
PEAR Channels: A Revolution in PHP Installation	 70
Application Support	 72

Introduction to Custom File Roles	 73
Creating PEAR_Installer_Role_Chiaramdb2schema Custom Role	 76
Full Range of Possible Custom File Roles	 81

Introduction to Custom File Tasks	 83
Creating the PEAR_Task_Chiara_Managedb Custom Task	 87
The Full Range of Possible Custom File Tasks	 96

Post-Installation Scripts for Ultimate Customization	 99
Bundling Several Packages into a Single Archive	 115
Backwards Compatibility: Using package.xml 1.0 and 2.0	 116
Why Support Old and Crusty package.xml 1.0?	 117
Case Study: The PEAR Package	 118
PEAR_PackageFileManager	 119

Obtaining PEAR_PackageFileManager	 119
PEAR_PackageFileManager Script and the package.xml Files
it Generates	 119
How PEAR_PackageFileManager Makes a Hard Life Easy	 129

Globbing Files for package.xml	 129
Managing Changelog	 130
Synchronizing package.xml Version 1.0 and package.xml Version 2.0	 131

Creating a Package for Installation with the PEAR Installer	 132
Summary	 133

Chapter 4: Clever Website Coordination Using the PEAR Installer	 135
Overview of the Problem	 135
Understanding the Problem	 136

Managing Code Breakage and Reverting to Previous Versions	 137
Managing Missing or Extraneous Files	 138

Table of Contents

[iii]

Coordinating Development with a Team of Developers	 139
Backing Up Code: Redundancy as a Necessary Precaution	 140

The Solution, Part I: All-Important Source Control 	 140
Providing Redundancy and Revision History	 141
Installing CVS or Subversion	 141

Concurrent Versions System	 142
Subversion	 145

Intelligent Source Control	 148
Maintaining Branches for Complex Versioning Support	 148
Using Tags to Mark Point Releases	 149

The Solution, Part II: Using the PEAR Installer to Update the Website	 150
Generating package.xml from the Source Control Checkout	 154
Packaging: Coordinating Release Versions with Tags and Branches	 160
Testing the Release before Uploading	 161
Upgrading the Live Server	 164

Using the pear upgrade Command	 166
The Real Beauty of Using Pear to Fix Problems	 167

Summary	 168
Chapter 5: Releasing to the World: PEAR Channels 	 169

Distributing a package.xml-Based Package	 170
Distributing Packages through a Channel Server	 173

The channel.xml File	 174
channel.xml Tag Summary	 176
Obtaining Chiara_PEAR_Server	 182
Configuring the Server; Obtaining a Front End for End Users	 183
Adding a Package and Releasing Packages	 185
Installing a Public Channel Front End 	 188

Distributing Pay-For-Use PHP Applications through a Channel	 191
Distributing Packages through Static tarballs for Single-Client
Installations	 197

Who Needs this Feature?	 197
Differences in package.xml and Dependencies	 197
Releasing Equals Uploading	 199

Security Issues Inherent in Remote Installation	 200
How do PEAR Installer and Chiara_PEAR_Server Provide Security?	 201

Extra Security beyond what PEAR Provides	 201
Specific Security Principles Applied in Designing the PEAR Installer and
Chiara_PEAR_Server	 202

Summary	 204

Table of Contents

[iv]

Chapter 6: Embedding the PEAR Installer: Designing a
Custom Plug-In System	 205

Why Embed PEAR?	 207
Simplify User Choices for Installation	 208
Eliminate Chances for Error	 208

Other Plug-In Systems	 208
Bundling Plug-Ins Directly in the Source Code	 209
Subpackages – PEAR Dependencies	 209

Case Study: MDB2	 210
Custom Plug-In Systems: Remote Server	 214

Case Study: Serendipity Blog's Spartacus Plug-In Manager	 215
Case Study: Seagull Framework's Embedded PEAR Installer	 219

Designing a Custom PEAR Channel-Based Plug-In System	 224
Reusing Existing Functionality	 225

PEAR Installer Infrastructure: REST and PEAR Installer Classes	 226
Extending REST with Custom Information	 238
Designing a Lightweight Installer Plug-In: The Code At Last	 239

MyBlog_Template_IConfig and MyBlog_Template_Config	 240
MyBlog_Template_REST	 241
MyBlog_Template_Lister	 248
MyBlog_Template_Fetcher	 253
The MyBlog Post-Install Script	 258
The Rest of the Fake MyBlog Package	 264
Improvements for the Ambitious	 272

Summary	 273
Index	 275

	The PEAR Installer Manifesto
	Table of Contents
	Preface
	Chapter 1: Acquiring PEAR: What is it and How do I Get it?
	A Democratic Innovation for PHP: PEAR Channels
	What is PEAR? A Code Repository or an Installer?
	PEAR Package Repository and PEAR Channel
	PEAR Installer

	Installing the PEAR Installer
	PEAR Bundled with PHP
	Installation for PHP Versions Older Than 5.1.0
	Other Unofficial Sources

	Synchronizing to a Server with no Shell Access Using PEAR_RemoteInstaller
	Summary

	Chapter 2: Mastering PHP Software Management with the PEAR Installer
	Distributing Libraries and Applications
	Differences between Libraries and Applications from the Installer's Point of View

	Using Versioning and Dependencies to Help Track and Eliminate Bugs
	Versioning
	PEAR Packaging and Strict Version Validation
	Enterprise-Level Dependency Management

	Distribution and Upgrades for the End User
	An Overview of package.xml Structure
	Tags Shared between package.xml 1.0 and 2.0
	Package Metadata
	Package Name/Channel
	Maintainers (Authors)
	Package Description and Summary

	Basic Release Metadata
	Package Version
	Package Stability
	External Dependencies
	Release Notes
	Release License
	Changelog
	File List, or Contents of the Package

	New Tags in package.xml
	File/Directory Attributes: name, role and baseinstalldir
	Summary

	Chapter 3: Leveraging Full Application Support with the PEAR Installer
	package.xml Version 2.0: Your Sexy New Friend
	PEAR Channels: A Revolution in PHP Installation
	Application Support
	Introduction to Custom File Roles
	Creating the PEAR_Installer_Role_Chiaramdb2schema Custom Role
	Full Range of Possible Custom File Roles

	Introduction to Custom File Tasks
	Creating the PEAR_Task_Chiara_Managedb Custom Task
	The Full Range of Possible Custom File Tasks

	Post-Installation Scripts for Ultimate Customization

	Bundling Several Packages into a Single Archive
	Backwards Compatibility: Using package.xml 1.0 and 2.0
	Why Support Old and Crusty package.xml 1.0?
	Case Study: The PEAR Package
	PEAR_PackageFileManager
	Obtaining PEAR_PackageFileManager
	PEAR_PackageFileManager Script and the package.xml Files it Generates
	How PEAR_PackageFileManager Makes a Hard Life Easy
	Globbing Files for package.xml
	Managing Changelog
	Synchronizing package.xml Version 1.0 and package.xml Version 2.0

	Creating a Package for Installation with the PEAR Installer
	Summary

	Chapter 4: Clever Website Coordination Using the PEAR Installer
	Overview of the Problem
	Understanding the Problem
	Managing Code Breakage and Reverting to Previous Versions
	Managing Missing or Extraneous Files
	Coordinating Development with a Team of Developers
	Backing Up Code: Redundancy as a Necessary Precaution

	The Solution, Part I: All-Important Source Control
	Providing Redundancy and Revision History
	Installing CVS or Subversion
	Concurrent Versions System
	Subversion

	Intelligent Source Control
	Maintaining Branches for Complex Versioning Support
	Using Tags to Mark Point Releases

	The Solution, Part II: Using the PEAR Installer to Update the Website
	Generating package.xml from the Source Control Checkout
	Packaging: Coordinating Release Versions with Tags and Branches
	Testing the Release before Uploading
	Upgrading the Live Server
	Using the pear upgrade Command
	The Real Beauty of Using Pear to Fix Problems

	Summary

	Chapter 5: Releasing to the World: PEAR Channels
	Distributing a package.xml-Based Package
	Distributing Packages through a Channel Server
	The channel.xml File
	channel.xml Tag Summary
	Obtaining Chiara_PEAR_Server
	Configuring the Server; Obtaining a Front End for End Users
	Adding a Package and Releasing Packages
	Installing a Public Channel Front End

	Distributing Pay-For-Use PHP Applications through a Channel
	Distributing Packages through Static tarballs for Single-Client Installations
	Who Needs this Feature?
	Differences in package.xml and Dependencies
	Releasing Equals Uploading

	Security Issues Inherent in Remote Installation
	How do PEAR Installer and Chiara_PEAR_Server Provide Security?
	Extra Security beyond what PEAR Provides
	Specific Security Principles Applied in Designing the PEAR Installer and Chiara_PEAR_Server

	Summary

	Chapter 6: Embedding the PEAR Installer: Designing a Custom Plug-In System
	Why Embed PEAR?
	Simplify User Choices for Installation
	Eliminate Chance for Error

	Other Plug-In Systems
	Bundling Plug-Ins Directly in the Source Code
	Subpackages – PEAR Dependencies
	Case Study: MDB2

	Custom Plug-In Systems: Remote Server
	Case Study: Serendipity Blog's Spartacus Plug-In Manager
	Case Study: Seagull Framework's Embedded PEAR Installer

	Designing a Custom PEAR Channel-Based Plug-In System
	Reusing Existing Functionality
	PEAR Installer Infrastructure: REST, PEAR Installer Classes

	Extending REST with Custom Information
	Designing a Lightweight Installer Plug-In: The Code At Last
	MyBlog_Template_IConfig and MyBlog_Template_Config
	MyBlog_Template_REST
	MyBlog_Template_Lister
	MyBlog_Template_Fetcher
	The MyBlog Post-Install Script
	The Rest of the Fake MyBlog Package
	Improvements for the Ambitious

	Summary

	Index

