
Table of Contents
Preface 1
Chapter 1: Acquiring PEAR: What is it and How do I Get It? 5

A Democratic Innovation for PHP: PEAR Channels 8
What is PEAR? A Code Repository or an Installer? 9

PEAR Package Repository and PEAR Channel 9
PEAR Installer 10

Installing the PEAR Installer 12
PEAR Bundled with PHP 12
Installation for PHP Versions Older than 5.1.0 15
Other Unofficial Sources 17

Synchronizing to a Server with no Shell Access Using
PEAR_RemoteInstaller 18
Summary 22

Chapter 2: Mastering PHP Software Management with the
PEAR Installer 23

Distributing Libraries and Applications 25
Differences between Libraries and Applications from the
Installer's Point of View 26

Using Versioning and Dependencies to Help Track and Eliminate Bugs 27
Versioning 27
PEAR Packaging and Strict Version Validation 29
Enterprise-Level Dependency Management 32

Distribution and Upgrades for the End User 34
An Overview of package.xml Structure 36
Tags Shared between package.xml 1.0 and 2.0 44

Package Metadata 44
Package Name/Channel 45
Maintainers (Authors) 46
Package Description and Summary 47

Table of Contents

[ii]

Basic Release Metadata 48
Package Version 48
Package Stability 49
External Dependencies 51
Release Notes 58
Release License 58
Changelog 58
File List, or Contents of the Package 59

New Tags in package.xml 60
File/Directory Attributes: name, role, and baseinstalldir 63
Summary 66

Chapter 3: Leveraging Full Application Support with the
PEAR Installer 69

package.xml Version 2.0: Your Sexy New Friend 69
PEAR Channels: A Revolution in PHP Installation 70
Application Support 72

Introduction to Custom File Roles 73
Creating PEAR_Installer_Role_Chiaramdb2schema Custom Role 76
Full Range of Possible Custom File Roles 81

Introduction to Custom File Tasks 83
Creating the PEAR_Task_Chiara_Managedb Custom Task 87
The Full Range of Possible Custom File Tasks 96

Post-Installation Scripts for Ultimate Customization 99
Bundling Several Packages into a Single Archive 115
Backwards Compatibility: Using package.xml 1.0 and 2.0 116
Why Support Old and Crusty package.xml 1.0? 117
Case Study: The PEAR Package 118
PEAR_PackageFileManager 119

Obtaining PEAR_PackageFileManager 119
PEAR_PackageFileManager Script and the package.xml Files
it Generates 119
How PEAR_PackageFileManager Makes a Hard Life Easy 129

Globbing Files for package.xml 129
Managing Changelog 130
Synchronizing package.xml Version 1.0 and package.xml Version 2.0 131

Creating a Package for Installation with the PEAR Installer 132
Summary 133

Chapter 4: Clever Website Coordination Using the PEAR Installer 135
Overview of the Problem 135
Understanding the Problem 136

Managing Code Breakage and Reverting to Previous Versions 137
Managing Missing or Extraneous Files 138

Table of Contents

[iii]

Coordinating Development with a Team of Developers 139
Backing Up Code: Redundancy as a Necessary Precaution 140

The Solution, Part I: All-Important Source Control 140
Providing Redundancy and Revision History 141
Installing CVS or Subversion 141

Concurrent Versions System 142
Subversion 145

Intelligent Source Control 148
Maintaining Branches for Complex Versioning Support 148
Using Tags to Mark Point Releases 149

The Solution, Part II: Using the PEAR Installer to Update the Website 150
Generating package.xml from the Source Control Checkout 154
Packaging: Coordinating Release Versions with Tags and Branches 160
Testing the Release before Uploading 161
Upgrading the Live Server 164

Using the pear upgrade Command 166
The Real Beauty of Using Pear to Fix Problems 167

Summary 168
Chapter 5: Releasing to the World: PEAR Channels 169

Distributing a package.xml-Based Package 170
Distributing Packages through a Channel Server 173

The channel.xml File 174
channel.xml Tag Summary 176
Obtaining Chiara_PEAR_Server 182
Configuring the Server; Obtaining a Front End for End Users 183
Adding a Package and Releasing Packages 185
Installing a Public Channel Front End 188

Distributing Pay-For-Use PHP Applications through a Channel 191
Distributing Packages through Static tarballs for Single-Client
Installations 197

Who Needs this Feature? 197
Differences in package.xml and Dependencies 197
Releasing Equals Uploading 199

Security Issues Inherent in Remote Installation 200
How do PEAR Installer and Chiara_PEAR_Server Provide Security? 201

Extra Security beyond what PEAR Provides 201
Specific Security Principles Applied in Designing the PEAR Installer and
Chiara_PEAR_Server 202

Summary 204

Table of Contents

[iv]

Chapter 6: Embedding the PEAR Installer: Designing a
Custom Plug-In System 205

Why Embed PEAR? 207
Simplify User Choices for Installation 208
Eliminate Chances for Error 208

Other Plug-In Systems 208
Bundling Plug-Ins Directly in the Source Code 209
Subpackages – PEAR Dependencies 209

Case Study: MDB2 210
Custom Plug-In Systems: Remote Server 214

Case Study: Serendipity Blog's Spartacus Plug-In Manager 215
Case Study: Seagull Framework's Embedded PEAR Installer 219

Designing a Custom PEAR Channel-Based Plug-In System 224
Reusing Existing Functionality 225

PEAR Installer Infrastructure: REST and PEAR Installer Classes 226
Extending REST with Custom Information 238
Designing a Lightweight Installer Plug-In: The Code At Last 239

MyBlog_Template_IConfig and MyBlog_Template_Config 240
MyBlog_Template_REST 241
MyBlog_Template_Lister 248
MyBlog_Template_Fetcher 253
The MyBlog Post-Install Script 258
The Rest of the Fake MyBlog Package 264
Improvements for the Ambitious 272

Summary 273
Index 275

	The PEAR Installer Manifesto
	Table of Contents
	Preface
	Chapter 1: Acquiring PEAR: What is it and How do I Get it?
	A Democratic Innovation for PHP: PEAR Channels
	What is PEAR? A Code Repository or an Installer?
	PEAR Package Repository and PEAR Channel
	PEAR Installer

	Installing the PEAR Installer
	PEAR Bundled with PHP
	Installation for PHP Versions Older Than 5.1.0
	Other Unofficial Sources

	Synchronizing to a Server with no Shell Access Using PEAR_RemoteInstaller
	Summary

	Chapter 2: Mastering PHP Software Management with the PEAR Installer
	Distributing Libraries and Applications
	Differences between Libraries and Applications from the Installer's Point of View

	Using Versioning and Dependencies to Help Track and Eliminate Bugs
	Versioning
	PEAR Packaging and Strict Version Validation
	Enterprise-Level Dependency Management

	Distribution and Upgrades for the End User
	An Overview of package.xml Structure
	Tags Shared between package.xml 1.0 and 2.0
	Package Metadata
	Package Name/Channel
	Maintainers (Authors)
	Package Description and Summary

	Basic Release Metadata
	Package Version
	Package Stability
	External Dependencies
	Release Notes
	Release License
	Changelog
	File List, or Contents of the Package

	New Tags in package.xml
	File/Directory Attributes: name, role and baseinstalldir
	Summary

	Chapter 3: Leveraging Full Application Support with the PEAR Installer
	package.xml Version 2.0: Your Sexy New Friend
	PEAR Channels: A Revolution in PHP Installation
	Application Support
	Introduction to Custom File Roles
	Creating the PEAR_Installer_Role_Chiaramdb2schema Custom Role
	Full Range of Possible Custom File Roles

	Introduction to Custom File Tasks
	Creating the PEAR_Task_Chiara_Managedb Custom Task
	The Full Range of Possible Custom File Tasks

	Post-Installation Scripts for Ultimate Customization

	Bundling Several Packages into a Single Archive
	Backwards Compatibility: Using package.xml 1.0 and 2.0
	Why Support Old and Crusty package.xml 1.0?
	Case Study: The PEAR Package
	PEAR_PackageFileManager
	Obtaining PEAR_PackageFileManager
	PEAR_PackageFileManager Script and the package.xml Files it Generates
	How PEAR_PackageFileManager Makes a Hard Life Easy
	Globbing Files for package.xml
	Managing Changelog
	Synchronizing package.xml Version 1.0 and package.xml Version 2.0

	Creating a Package for Installation with the PEAR Installer
	Summary

	Chapter 4: Clever Website Coordination Using the PEAR Installer
	Overview of the Problem
	Understanding the Problem
	Managing Code Breakage and Reverting to Previous Versions
	Managing Missing or Extraneous Files
	Coordinating Development with a Team of Developers
	Backing Up Code: Redundancy as a Necessary Precaution

	The Solution, Part I: All-Important Source Control
	Providing Redundancy and Revision History
	Installing CVS or Subversion
	Concurrent Versions System
	Subversion

	Intelligent Source Control
	Maintaining Branches for Complex Versioning Support
	Using Tags to Mark Point Releases

	The Solution, Part II: Using the PEAR Installer to Update the Website
	Generating package.xml from the Source Control Checkout
	Packaging: Coordinating Release Versions with Tags and Branches
	Testing the Release before Uploading
	Upgrading the Live Server
	Using the pear upgrade Command
	The Real Beauty of Using Pear to Fix Problems

	Summary

	Chapter 5: Releasing to the World: PEAR Channels
	Distributing a package.xml-Based Package
	Distributing Packages through a Channel Server
	The channel.xml File
	channel.xml Tag Summary
	Obtaining Chiara_PEAR_Server
	Configuring the Server; Obtaining a Front End for End Users
	Adding a Package and Releasing Packages
	Installing a Public Channel Front End

	Distributing Pay-For-Use PHP Applications through a Channel
	Distributing Packages through Static tarballs for Single-Client Installations
	Who Needs this Feature?
	Differences in package.xml and Dependencies
	Releasing Equals Uploading

	Security Issues Inherent in Remote Installation
	How do PEAR Installer and Chiara_PEAR_Server Provide Security?
	Extra Security beyond what PEAR Provides
	Specific Security Principles Applied in Designing the PEAR Installer and Chiara_PEAR_Server

	Summary

	Chapter 6: Embedding the PEAR Installer: Designing a Custom Plug-In System
	Why Embed PEAR?
	Simplify User Choices for Installation
	Eliminate Chance for Error

	Other Plug-In Systems
	Bundling Plug-Ins Directly in the Source Code
	Subpackages – PEAR Dependencies
	Case Study: MDB2

	Custom Plug-In Systems: Remote Server
	Case Study: Serendipity Blog's Spartacus Plug-In Manager
	Case Study: Seagull Framework's Embedded PEAR Installer

	Designing a Custom PEAR Channel-Based Plug-In System
	Reusing Existing Functionality
	PEAR Installer Infrastructure: REST, PEAR Installer Classes

	Extending REST with Custom Information
	Designing a Lightweight Installer Plug-In: The Code At Last
	MyBlog_Template_IConfig and MyBlog_Template_Config
	MyBlog_Template_REST
	MyBlog_Template_Lister
	MyBlog_Template_Fetcher
	The MyBlog Post-Install Script
	The Rest of the Fake MyBlog Package
	Improvements for the Ambitious

	Summary

	Index

