

Preface

Goals

This book is intended to be a complete and useful reference to the Unified Model-
ing Language (UML) for the developer, architect, project manager, system engi-
neer, programmer, analyst, contracting officer, customer, and anyone else who
needs to specify, design, build, or understand complex software systems. It pro-
vides a full reference to the concepts and constructs of UML, including their se-
mantics, syntax, notation, and purpose. It is organized to be a convenient but
thorough reference for the working professional developer. It also attempts to pro-
vide additional detail about issues that may not be clear from the standards docu-
ments and to provide a rationale for many decisions that went into the UML.

This book is not intended as a guide to the UML standards documents or to the
internal structure of the metamodel contained in them. The details of the meta-
model are of interest to methodologists and UML tool builders, but most other
developers have little need for the arcane details of the Object Management Group
(OMG) documents. This book provides all the details of UML that most develop-
ers need; in many cases, it makes information explicit that must otherwise be
sought between the lines of the original documents. For those who do wish to
consult the source documents, they are included on the accompanying CD.

This book is intended as a reference for those who already have some under-
standing of object-oriented technology. For beginners, the original books by us
and by other authors are listed in the bibliography; although some of the notation
has changed, books such as [Rumbaugh-91], [Booch-94], [Jacobson-92], and
[Meyer-88] provide an introduction to object-oriented concepts that is still valid
and therefore unnecessary to duplicate here. For a tutorial introduction to UML
that shows how to model a number of common problems, see The Unified Model-
ing Language User Guide [Booch-99]. Those who already know an object-oriented
method, such as OMT, Booch, Objectory, Coad-Yourdon, or Fusion, should be
able to read the Reference Manual and use it to understand UML notation and
xi

xii Preface

semantics; to learn UML quickly, they may nevertheless find it useful to read the
User Guide.

UML does not require a particular development process, and this book does not
describe one. Although UML may be used with a variety of development
processes, it was designed to support an iterative, incremental, use-case–driven
process with a strong architectural focus—the kind we feel is most suitable for the
development of modern, complex systems. The Unified Software Development Pro-
cess [Jacobson-99] describes the kind of process we believe complements the UML
and best supports software development.

Outline of the Book

The UML Reference Manual is organized into three parts: an overview of UML his-
tory and of modeling, a survey of UML concepts, and an alphabetical encyclopedia
of UML terms and concepts.

The first part is a survey of UML—its history, purposes, and uses—to help you
understand the origin of UML and the need it tries to fill.

The second part is a brief survey of UML views so that you can put all the con-
cepts into perspective. The survey provides a brief overview of the views UML sup-
ports and shows how the various constructs work together. This part begins with
an example that walks through various UML views and then contains one chapter
for each kind of UML view. This survey is not intended as a full tutorial or as a
comprehensive description of concepts. It serves mainly to summarize and relate
the various UML concepts and provides starting points for detailed readings in the
encyclopedia.

The third part contains the reference material organized for easy access to each
topic. The bulk of the book is an alphabetical encyclopedia of all of the concepts
and constructs in UML. Each UML term of any importance has its own entry in
the encyclopedia. The encyclopedia is meant to be complete; therefore, everything
in the concept overview in Part 2 is repeated in more detail in the encyclopedia.
The same or similar information has sometimes been included in multiple ency-
clopedia articles so that the reader can conveniently find it.

The reference part also contains an alphabetic list of UML standard elements. A
standard element is a feature predefined using the UML extensibility mechanisms.
The standard elements are extensions that are felt to be widely useful.

Appendices show the UML metamodel, a summary of UML notation, and some
standard sets of extensions for particular domains. There is a brief bibliography of
major object-oriented books, but no attempt has been made to include a compre-
hensive citation of sources of ideas for UML or other approaches. Many of the
books in the bibliography contain excellent lists of references to books and journal
articles for those interested in tracking the development of the ideas.

Preface xiii

Encyclopedia Article Formatting Conventions

The encyclopedia part of the book is organized as an alphabetical list of entries,
each describing one concept in some detail. The articles represent a flat list of
UML concepts at various conceptual levels. A high-level concept typically contains
a summary of its subordinate concepts, each of which is fully described in a sepa-
rate article. The articles are highly cross-referenced. This flat encyclopedia organi-
zation permits the description of each concept to be presented at a fairly uniform
level of detail, without constant shifts in level for the nested descriptions that
would be necessary for a sequential presentation. The hypertext format of the doc-
ument should also make it convenient for reference. It should not be necessary to
use the index much; instead go directly to the main article in the encyclopedia for
any term of interest and follow cross-references. This format is not necessarily
ideal for learning the language; beginners are advised to read the overview descrip-
tion of UML found in Part 2 or to read introductory books on UML, such as the
UML User Guide [Booch-99].

Encyclopedic articles have the following divisions, although not all divisions ap-
pear in all articles.

Brief definition

The name of the concept appears in boldface, set to the left of the body of the arti-
cle. A brief definition follows in normal type. This definition is intended to cap-
ture the main idea of the concept, but it may simplify the concept for concise
presentation. Refer to the main article for precise semantics.

Semantics

This section contains a detailed description of the meaning of the concept, includ-
ing constraints on its uses and its execution consequences. Notation is not covered
in this section, although examples use the appropriate notation. General semantics
are given first. For concepts with subordinate structural properties, a list of the
properties follows the general semantics, often under the subheading Structure. In
most cases, the properties appear as a table in alphabetical order by property
name, with the description of each property on the right. If a property has a brief
enumerated list of choices, they may be given as an indented sublist. In more com-
plicated cases, the property is given its own article to avoid excessive nesting.
When properties require more explanation than permitted by a table, they are de-
scribed in normal text with run-in headers in boldface italics. In certain cases, the
main concept is best described under several logical subdivisions rather than one
list. In such cases, additional sections follow or replace the Structure subsection.
Although several organizational mechanisms have been used, their structure
should be obvious to the reader.

xiv Preface

Notation

This section contains a detailed description of the notation for the concept. Usu-
ally, the notation section has a form that parallels the preceding semantics section,
which it references, and it often has the same divisions. The notation section usu-
ally includes one or more diagrams to illustrate the concept. The actual notation is
printed in black ink. To help the reader understand the notation, many diagrams
contain annotations in blue ink. Any material in blue is commentary and is not
part of the actual notation.

Example

This subsection contains examples of notation or illustrations of the use of the
concept. Frequently, the examples also treat complicated or potentially confusing
situations.

Discussion

This section describes subtle issues, clarifies tricky and frequently confused points,
and contains other details that would otherwise digress from the more descriptive
semantics section. A minority of articles have a discussion section.

This section also explains certain design decisions that were made in the devel-
opment of the UML, particularly those that may appear counterintuitive or that
have provoked strong controversy. Only a fraction of articles have this section.
Simple differences in taste are generally not covered.

Standard elements

This section lists standard constraints, tags, stereotypes, and other conventions
that are predefined for the concept in the article. This section is fairly rare.

Syntax Conventions

Syntax expressions. Syntax expressions are given in a modified BNF format in a
sans serif font. To avoid confusing literal values and syntax productions, literal val-
ues that appear in the target sentence are printed in black ink, and the names of
syntax variables and special syntax operators are printed in blue ink.

Text printed in black ink appears in that form in the target string.
Punctuation marks (they are always printed in black) appear in the target string.
Any word printed in blue ink represents a variable that must be replaced by an-

other string or another syntax production in the target string. Words may contain
letters and hyphens. If a blue word is italicized or underlined, the actual replace-
ment string must be italicized or underlined.

Preface xv

In code examples, comments are printed in blue ink to the right of the code text.
Subscripts and overbars are used as syntax operators as follows:

expressionopt The expression is optional.

expressionlist, A comma-separated list of the expression may appear. If
there is zero or one repetition, there is no separator. Each
repetition may have a separate substitution. If a different
punctuation mark than a comma appears in the sub-
script, then it is the separator.

= expressionopt An overbar ties together two or more terms that are con-
sidered a unit for optional or repeated occurrences. In
this example, the equal sign and the expression form one
unit that may be omitted or included. The overbar is
unnecessary if there is only one term.

Two-level nesting is avoided.

Literal strings. In running text, language keywords, names of model elements, and
sample strings from models are shown in a sans serif font.

Diagrams. In diagrams, blue text and arrows are annotations, that is, explanations
of the diagram notation that do not appear in an actual diagram. Any text and
symbols in black ink are actual diagram notation.

CD

This book is accompanied by a CD containing the full text of the book in Adobe
Reader (PDF) format. Using Adobe Reader, the viewer can easily search the book
for a word or phrase. The CD version also contains a clickable table of contents, in-
dex, Adobe Reader thumbnails, and extensive hot links in the body of the articles.
Simply click on one of the links to jump to the encyclopedia article for the word or
phrase.

The CD also contains the full text of the OMG UML specifications, included by
the permission of the Object Management Group.

We feel that this CD will be a useful on-line reference to UML for advanced
users.

For More Information

Additional source files and up-to-date information on further work on UML and
related topics can be found on the World Wide Web sites www.rational.com and
www.omg.org.

xvi Preface

Acknowledgments

We want to thank many people who made the UML possible. First, we must thank
Rational Software Corporation, especially Mike Devlin and Paul Levy, who had the
vision to bring us together, start the unification work, and stay the course during
the four years that were required to bring the work to successful completion. We
also thank the Object Management Group for providing the framework that
brought together many diverse viewpoints and merged them together into a broad
consensus that was much greater than any one contribution.

We particularly want to thank Cris Kobryn, who led the technical team that pre-
pared the UML standard and who managed to achieve a consensus among an ex-
tremely strong-willed group of persons (and the three of us were not the least of
his problems). His diplomatic skills and technical balance kept the UML effort
from foundering amid many differences of opinion. Cris also reviewed the book
and provided countless useful suggestions.

We would like to thank Gunnar Övergaard for reviewing the book thoroughly,
as well as for his perseverance in completing many sections of the UML docu-
ments that were not fun to write but were necessary to its formal correctness.

We want to thank Karin Palmkvist for an exceedingly thorough review that un-
covered many bugs in technical content, as well as many flaws in grammar, phras-
ing, and presentation.

We would also like to thank Mike Blaha, Conrad Bock, Perry Cole, Bruce Doug-
lass, Martin Fowler, Eran Gery, Pete McBreen, Guus Ramackers, Tom Schultz, Ed
Seidewitz, and Bran Selic for their helpful reviews.

Most of all, we want to thank the scores or even hundreds of persons who con-
tributed to the community of ideas from which UML was drawn—ideas in object-
oriented technology, software methodology, programming languages, user inter-
faces, visual programming, and numerous other areas of computer science. It is
impossible to list them all, or indeed to track even the major chains of influence,
without a major scholarly effort, and this is an engineering book, not a historical
review. Many are well known, but many good ideas came from those who did not
have the good fortune to be widely recognized.

On a more personal note, I wish to thank Professor Jack Dennis, who inspired
my work in modeling and the work of many other students, more than twenty-five
years ago. The ideas from his Computations Structures Group at MIT have borne
much fruit, and they are not the least of the sources of UML. I must also thank
Mary Loomis and Ashwin Shah, with whom I developed the original ideas of
OMT, and my former colleagues at GE R&D Center, Mike Blaha, Bill Premerlani,
Fred Eddy, and Bill Lorensen, with whom I wrote the OMT book.

Preface xvii

Finally, without the patience of my wife, Madeline, and my sons, Nick and Alex,
there would have been no UML and no book about it.

James Rumbaugh
Cupertino, California
November 1998

	Contents
	Preface
	Goals
	Outline of the Book
	Encyclopedia Article Formatting Conventions
	Brief definition
	Semantics
	Notation
	Example
	Discussion
	Standard elements

	Syntax Conventions
	CD
	For More Information
	Acknowledgments

	Part 1: Background
	UML Overview
	Brief Summary of UML
	UML History
	Object-oriented development methods
	Unification effort
	Standardization
	Core team
	What does unified mean?

	Goals of UML
	UML Concept Areas
	Syntax of Expressions and Diagrams

	The Nature and Purpose of Models
	What Is a Model?
	What Are Models For?
	Levels of Models
	What Is in a Model?
	What Does a Model Mean?

	Part 2: UML Concepts
	UML Walkthrough
	UML Views
	Static View
	Use Case View
	Interaction View
	Sequence diagram
	Collaboration diagram

	State Machine View
	Activity View
	Physical Views
	Model Management View
	Extensibility Constructs
	Connections Among Views

	Static View
	Overview
	Classifiers
	Relationships
	Associations
	Generalization
	Inheritance
	Multiple inheritance
	Single and multiple classification
	Static and dynamic classification

	Realization
	Dependencies
	Constraint
	Instances
	Object diagram

	Use Case View
	Overview
	Actor
	Use Case

	State Machine View
	Overview
	State Machine
	Event
	State
	Transition
	Composite States

	Activity View
	Overview
	Activity Diagram
	Activities and Other Views

	Interaction View
	Overview
	Collaboration
	Interaction
	Sequence Diagram
	Activation
	Collaboration Diagram
	Patterns

	Physical Views
	Overview
	Component
	Node

	Model Management View
	Overview
	Package
	Dependencies on Packages
	Access and Import Dependency
	Model and Subsystem

	Extension Mechanisms
	Overview
	Constraint
	Tagged Value
	Stereotypes
	Tailoring UML

	UML Environment
	Overview
	Semantics Responsibilities
	Notation Responsibilities
	Programming Language Responsibilities
	Modeling with Tools
	Tool issues
	Inconsistent models for work in progress
	Null and unspecified values

	Part 3: Reference
	Encyclopedia of Terms
	abstract
	abstract class
	abstract operation
	abstraction
	access
	action
	action expression
	action sequence
	action state
	activation
	active
	active class
	active object
	active state configuration
	activity
	 activity diagram
	activity expression
	activity graph
	activity state
	activity view
	actor
	actual parameter
	aggregate
	aggregation
	analysis
	analysis time
	ancestor
	architecture
	argument
	artifact
	association
	association (binary)
	association (n-ary)
	association class
	association end
	association generalization
	association role
	asynchronous action
	atomic
	attribute
	background information
	become
	behavior
	behavioral feature
	behavioral view
	binary association
	bind
	binding
	Boolean
	Boolean expression
	bound element
	branch
	call
	call event
	canonical notation
	cardinality
	change event
	changeability
	child
	class
	class diagram
	class-in-state
	class name
	classifier
	classifier role
	client
	collaboration
	collaboration diagram
	collaboration role
	combination
	comment
	communication association
	compartment
	compile time
	completion transition
	complex transition
	component
	component diagram
	composite aggregation
	composite class
	composite object
	composite state
	composition
	concrete
	concurrency
	concurrent substate
	conditional thread
	conflict
	constraint
	construction
	constructor
	container
	context
	control flow
	control icons
	copy
	creation
	current event
	data type
	data value
	default value
	deferred event
	delegation
	dependency
	deployment
	deployment diagram
	deployment view
	derivation
	derived element
	descendant
	descriptor
	design
	design time
	destroy
	destruction
	development process
	diagram
	direct class
	direct instance
	discriminator
	disjoint substate
	distribution unit
	dynamic classification
	dynamic concurrency
	dynamic view
	elaboration
	element
	entry action
	enumeration
	event
	exception
	exit action
	export
	expression
	extend
	extension point
	extent
	feature
	final state
	fire
	flow
	focus of control
	font usage
	fork
	formal argument
	framework
	friend
	full descriptor
	functional view
	generalizable element
	generalization
	graphic marker
	guard condition
	guillemets
	history state
	hyperlink
	identity
	ill formed
	ill-formed
	implementation
	implementation class
	implementation inheritance
	implementation view
	import
	inactive
	inception
	include
	incremental development
	indirect instance
	inheritance
	initial state
	initial value
	initialization
	instance
	instance of
	instantiable
	instantiate
	instantiation
	intent
	interaction
	interaction diagram
	interaction view
	interface
	interface inheritance
	interface specifier
	internal transition
	invariant
	iteration expression
	iterative development
	join
	junction state
	keyword
	label
	language type
	layer
	leaf
	lifeline
	link
	link end
	list
	location
	many
	member
	merge
	message
	metaclass
	meta-metamodel
	metamodel
	metaobject
	metarelationship
	method
	model
	model element
	model management view
	modeling time
	module
	multiobject
	multiple classification
	multiple inheritance
	multiplicity
	multiplicity (of association)
	multiplicity (of attribute)
	multiplicity (of class)
	n-ary association
	name
	namespace
	navigability
	navigable
	navigation
	navigation efficiency
	node
	note
	object
	object diagram
	object flow
	object flow state
	object lifeline
	object set expression
	OCL
	operation
	ordering
	orthogonal substate
	owner scope
	package
	parameter
	parameter list
	parameterized element
	parent
	participates
	passive object
	path
	pathname
	 pattern
	permission
	persistent object
	polymorphic
	postcondition
	powertype
	precondition
	presentation element
	primitive type
	private
	private inheritance
	procedure expression
	process
	product
	projection
	property
	property list
	protected
	pseudoattribute
	pseudostate
	public
	qualifier
	query
	realization
	realize
	receive
	receiver
	reception
	reference
	refine
	refinement
	reification
	reify
	relationship
	repository
	request
	requirement
	responsibility
	reuse
	role
	rolename
	run time
	run-time
	run to completion
	run-to-completion
	scenario
	scope
	self-transition
	semantic variation point
	semantics
	send
	sender
	sequence diagram
	sequence number
	signal
	signal event
	signature
	simple state
	simple transition
	single classification
	single inheritance
	singleton
	snapshot
	source scope
	source state
	specialization
	specification
	stages of modeling
	state
	state machine
	state machine view
	statechart diagram
	static classification
	static view
	stereotype
	string
	structural feature
	structural view
	stub state
	stubbed transition
	subclass
	submachine
	submachine reference state
	substate
	substitutability principle
	subsystem
	subtype
	summarization
	superclass
	supertype
	supplier
	swimlane
	synch state
	synchronous action
	system
	tag
	tagged value
	target scope
	target state
	template
	thread
	time
	time event
	time expression
	timing mark
	trace
	transient link
	transient object
	transition (phase)
	transition
	transition time
	trigger
	triggerless transition
	tuple
	type
	type expression
	uninterpreted
	unspecified value
	usage
	use
	use case
	use case diagram
	use case generalization
	use case instance
	use case model
	use case view
	utility
	value
	vertex
	view
	visibility
	well formed
	well-formed

	Standard Elements
	access
	association
	become
	bind
	call
	complete
	copy
	create
	derive
	destroy
	destroyed
	disjoint
	document
	documentation
	enumeration
	executable
	extend
	facade
	file
	framework
	friend
	global
	implementation
	implementationClass
	implicit
	import
	include
	incomplete
	instanceOf
	instantiate
	invariant
	leaf
	library
	local
	location
	metaclass
	new
	overlapping
	parameter
	persistence
	postcondition
	powertype
	precondition
	process
	refine
	requirement
	responsibility
	self
	semantics
	send
	stereotype
	stub
	system
	table
	thread
	trace
	transient
	type
	use
	utility
	xor

	Part 4: Appendices
	UML Metamodel
	UML Definition Documents
	Metamodel Structure
	Foundation Package
	Core
	Data types
	Extension mechanisms

	Behavioral Elements Package
	Common behavior
	Collaborations
	Use cases
	State machines

	Model Management Package

	Notation Summary
	Process Extensions
	Tailoring the UML
	Software Development Process Extensions
	Organizational Stereotypes
	Class stereotypes
	Association stereotypes

	Business Modeling Extensions
	Organizational stereotypes
	Class stereotypes
	Association stereotypes

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

