Preface

About This Book

Most requirements books today provide general-purpose guidance such
as “involve the customer” and “make the requirements testable,” or doc-
ument-specific techniques such as Use Cases. In spite of this breadth of
coverage, several important topics are weakly, rarely, or never covered
in requirements books. These topics include the effect of requirements
on overall software quality (weakly covered), requirements reuse (rarely
covered), and requirements encapsulation (never covered). As its title
suggests, Software Requirements: Encapsulation, Quality, and Reuse strives
to remedy these shortcomings.

This book is able to cover these additional topics because it focuses
on the concepts and techniques of the Freedom approach to requirements.
Freedom is a lightweight, customer-centric technical software development
methodology originally developed for NASA’s Space Station Freedom
Program. Freedom strives to meet customer needs for functionality by
specifying requirements in an innovative manner that permits encapsula-
tion of requirements in code objects for later ease of change. Requirements
encapsulation in turn enables requirements reuse. Customer needs for
quality are addressed by continuous emphasis on quality drivers through-
out the development process. Direct participation of the customer, or a
knowledgeable customer representative, is essential to the Freedom
requirements process.

Freedom’s approach to requirements involves a change in perspective.
Rather than viewing requirements as statements about the software, Free-
dom considers requirements to be part of the software, namely, its external
interface. Freedom involves customers in requirements specification by
enlisting their help to specify the external interface of the software that
they will use. With the assistance of the developers, customers specify

Xi



xii W Preface

the software external interface in terms of stimulus-response pairs orga-
nized into cohesive sets called “stimulus sets.” The stimulus sets are
themselves organized hierarchically into a “functionality tree” that defines
the architecture of the external interface. During design, developers use
the external interface architecture as the upper level of the design archi-
tecture, thus ensuring architectural identity between requirements and
design. Within this upper level of design, a requirements encapsulating
“functionality module” is created for each stimulus set of the functionality
tree, thus ensuring architectural identity between requirements and imple-
mentation. A change to any requirement (external interface stimu-
lus—response pair) is consequently localized by the architecture to one
functionality module. Architectural symmetry effectively achieves require-
ments encapsulation in code modules, making requirements change easier
throughout the life of the software, and enables requirements reuse, easing
future development.

It is suggested that readers of this book have some prior understanding
of object-oriented (OO) concepts. An OO background is helpful in under-
standing the Freedom concept of requirements encapsulation, which is
built upon the OO concept of information-hiding. Due to its importance,
information-hiding is reviewed in Chapter 2, but prior exposure to OO
can ease comprehension.

Coding proficiency is also helpful in getting the most out of this book.
Coding may seem like an unnecessary prerequisite for a requirements
process. However, creation of a user interface (UD) mockup is a necessary
step in the process. A Ul mockup is program code that implements the
proposed look and feel of the UL It is an effective vehicle for obtaining
user confirmation of requirements correctness very early in the develop-
ment cycle when change is least expensive. Also, an explanation of the
structure of a Ul mockup provides insight into the practical aspects of
encapsulation of requirements in code objects. For these reasons, the book
covers creation of Ul mockups. Hence, prior exposure to coding in general,
and UI development in particular, is helpful.

The preferred programming language for Freedom is an OO language
such as Java. Hence, the code examples in the book are in Java. However,
Freedom can be used with any programming language that supports data
encapsulation. This includes non-OO languages such as C or Fortran when
such languages are used carefully.!

This book uses terminology from original information-hiding theory,
and from modern object-oriented languages such as Java. Both sources
use different words to describe the same or similar concepts. For example,
the terms “module” and “class” both refer to a unit of code. Generally
speaking, “module” is a generic term for a unit of code, and “class” is a
unit of code in an OO programming language such as Java. Clarification
of such terminology is provided by the Glossary.





