
What Is JavaScript to a
Programmer?
In the beginning, there were Assembly and compiled lan-
guages. Later came scripting languages such as sed, awk, and
Perl, which many programmers used to perform a variety of
tasks. Followed by, in the late 80s and early 90s, the Internet,
which exploded into a technological revolution that allowed
anyone with a modem to communicate and retrieve informa-
tion from around the world. As the Internet grew in number of
users, it was obvious that an increase in functionality was
needed in the browsers and the data they were rendering.

HTML, even with its advantages, was falling short of provid-
ing the control many developers wanted when creating Web
pages and applications. This prompted the use of server-side
programs, or scripts as they were often called, to handle some
of the page dynamics developers needed from their sites.

These programs helped Web developers by allowing them to
increase a site’s functionality as well as process user-submitted
information. However, CGI, or common gateway interface,
scripts had to generate and return a response when the user sent
incorrect or incomplete information. This led to the unneces-
sary back-and-forth transmission of data between browser and
server. But, overall, it was a minor price to pay for the func-
tionality it provided.

With time, and an increase in traffic, it became increasingly
obvious that client-side intelligence was needed to offload
some of the CGI functionality. Something was needed to per-
form this error checking and to decrease the amount of time a
user spent connecting to a server to validate data. This would

C H A P T E R  1

W
h

a
t Is Ja

v
a
S
crip

t to
 a

 P
ro

g
ra

m
m

e
r?

03 0672321416 CH01  7/24/01  11:47 AM  Page 5



also enable the Web site to offload some of its processing load to the browser machine,
which meant an increase in the overall performance of a site.

It was partially this lack of client-side functionality and efficiency that helped spawn a
new scripting language—one that could be executed within a browser’s environment
and not on the server. This language could be used to perform client-side tasks such as
form validation and dynamic page content creation—one that would put the program-
ming into HTML publishing. Welcome to the birth of JavaScript.

Welcome to JavaScript
On December 4, 1995, Netscape and Sun jointly introduced JavaScript 1.0, originally
called LiveScript, to the world. This language, unlike its server-based predecessors,
could be interpreted within the then new Netscape Navigator 2 browsers. As an inter-
preted language, JavaScript was positioned as a complement to Java and would allow
Web developers to create and deploy custom applications across the enterprise and
Internet alike. JavaScript gave Web developers the power to truly program—not just
format data with HTML.

In addition to the client-side control developers desired, Netscape implemented server-
side JavaScript. This allowed developers to use the same programming language on the
server as they did in their pages for browsers. Database connection enhancements were
added to the language (called LiveWire), allowing the developer to pull information
directly from a database and maintain user sessions for common functionality such as
shopping carts. JavaScript had truly bridged the gap between the simple world of
HTML and the more complex CGI programs on the server. It provided a common lan-
guage for Web developers to design, implement, and deploy solutions across their net-
works and distributed the overall processing load of their applications.

The next level of acceptance in the world of JavaScript was Microsoft’s implementa-
tion of the language in its Internet Explorer 3 browser—the implementation was called
JScript. Similar to Netscape, Microsoft also implemented the language on the server-
side (JScript 2.0) within its ASP (Active Server Pages) environment. It also allowed
developers the flexibility of using a common language on both the client and server-
side, while providing many of the robust features, such as object invocation and usage,
in compiled languages.

JAVASCRIPT VERSUS JSCRIPT,  AND WHAT IS
ECMASCRIPT?

JScript 1.0 was based on the published documentation from Netscape, so essen-
tially it is the same thing as JavaScript 1.0. However, there were a few “features”
that Netscape did not publish, as well as some functionality that was not re-cre-
ated by Microsoft correctly. The result of this is that there are some discrepancies
between JScript 1.0 and JavaScript 1.0.

Since the release of these initial browsers, JavaScript and JScript were both submit-
ted to the ECMA (European Computer Manufacturers Association) standardization

6 C h a p t e r  1 :  W h a t  I s  J a v a S c r i p t  t o  a  P r o g r a m m e r ?

03 0672321416 CH01  7/24/01  11:47 AM  Page 6



body and have become the standard known as ECMAScript (ECMA-262). Because
of this standardization, it is now considered that JavaScript is Netscape’s implemen-
tation of ECMAScript while JScript is Microsoft’s implementation.

The adoption of the first edition of ECMAScript occurred in June 1997 followed by
its adoption by the International Organization for Standardization and International
Electrotechnical Commission in April 1998 (ISO/IEC 16262). A second edition of
the standard was approved by ECMA in June 1998, and a third edition was
adopted in December 1999.

NOTE
Because Netscape’s JavaScript was the foundation of all this, the book will refer to
JavaScript, JScript, and ECMAScript simply as JavaScript except where a differentia-
tion is needed.

So, what is JavaScript to the programmer? Well, in its purest form, it is an object-based,
cross-platform, loosely-typed, multi-use language that allows a programmer to deploy
many types of solutions to many clients. It not only involves adding functionality to
Web pages as rendered within a browser, it also allows server-side processing for
Netscape and Microsoft Web servers.

JScript has also been included in Microsoft’s Windows Script Host (WSH), to allow
programmers to write scripts to be executed on the operating system itself, and most
recently as a major language under their .NET strategy (more on that later). When oper-
ating within the WSH environment, JScript is similar to the old DOS batch files, but
gives programmers more functionality and versatility in what they can accomplish.
This type of advancement has allowed the language to take hold in the computer world
and continue to progress.

In addition to the benefits of these environments in which JavaScript can be executed,
security measures are in place to protect end users against malicious code. Even though
it is still young in terms of age, JavaScript is very mature and powerful. This function-
ality, ability, and versatility positions JavaScript as the best solution for many pro-
grammers.

Now that you’ve learned about what JavaScript is, you should dive a little deeper into
what it means to a programmer. Being programmers ourselves, we know that a few
strategically placed words do not make a language useful; so first, we’ll look at the
object-based characteristics of JavaScript.

Object-Based Technology
The fact that you are reading this reference somewhat implies that you have pro-
grammed in JavaScript or at least one other language before, even if only for one
semester in college. Going one step further, I bet the language you programmed in was
either C++, Java, or Perl—with each having various levels of object orientation (OO).
Java specifically is OO by virtue of having all programmer created objects extend from
core Java language classes or their own.

O b j e c t - B a s e d  Te c h n o l o g y  7

03 0672321416 CH01  7/24/01  11:47 AM  Page 7


