
- 1 -

The linked image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. V erify that the link points to the correct file and location.

Copyright© 1998 by David J. Kruglinski
Chapter One
1. Microsoft Windows and Visual C++
Enough has already been written about the acceptance of Microsoft Windows and the benefits of the graphical user
interface (GUI). This chapter summarizes the Windows programming model (Win32 in particular) and shows you
how the Microsoft Visual C++ components work together to help you write applications for Windows. Along the way,
you might learn some new things about Windows.
2. The Windows Programming Model
No matter which development tools you use, programming for Windows is different from old-style batch-oriented or
transaction-oriented programming. To get started, you need to know some Windows fundamentals. As a frame of
reference, we'll use the well-known MS-DOS programming model. Even if you don't currently program for plain MS-
DOS, you're probably familiar with it.
2.1 Message Processing
When you write an MS-DOS-based application in C, the only absolute requirement is a function named main. The
operating system calls main when the user runs the program, and from that point on, you can use any programming
structure you want. If your program needs to get user keystrokes or otherwise use operating system services, it calls
an appropriate function, such as getchar, or perhaps uses a character-based windowing library.
When the Windows operating system launches a program, it calls the program's WinMain function. Somewhere your
application must have WinMain, which performs some specific tasks. Its most important task is creating the
application's main window, which must have its own code to process messages that Windows sends it. An essential
difference between a program written for MS-DOS and a program written for Windows is that an MS-DOS-based
program calls the operating system to get user input, but a Windows-based program processes user input via
messages from the operating system.

The linked image cannot be display ed. The file may hav e been mov ed, renamed, or deleted. V erify that the link points to the correct file and location.

Many development environments for Windows, including Microsoft Visual C++ version 6.0 with the
Microsoft Foundation Class (MFC) Library version 6.0, simplify programming by hiding the WinMain
function and structuring the message-handling process. When you use the MFC library, you need
not write a WinMain function but it is essential that you understand the link between the operating
system and your programs.

Most messages in Windows are strictly defined and apply to all programs. For example, a WM_CREATE message is
sent when a window is being created, a WM_LBUTTONDOWN message is sent when the user presses the left
mouse button, a WM_CHAR message is sent when the user types a character, and a WM_CLOSE message is sent
when the user closes a window. All messages have two 32-bit parameters that convey information such as cursor
coordinates, key code, and so forth. Windows sends WM_COMMAND messages to the appropriate window in
response to user menu choices, dialog button clicks, and so on. Command message parameters vary depending on
the window's menu layout. You can define your own messages, which your program can send to any window on the
desktop. These user-defined messages actually make C++ look a little like Smalltalk.

