
Introduction

Design patterns have been around for quite a few years.

They were originally created by the Gang of Four (Erich

Gamma, Richard Helm, Ralph Johnson, and John

Vlissides), which is responsible for formalizing the accepted

design patterns we use today. Their use, while questioned

and argued over by different programming schools of

thought, has generally been accepted as “best practices”

within the development community. The original takeoff of

design patterns was brought about in the Java and C++

world.

Other languages like .NET (dot NET) have sprung up in

recent years to fill certain marketing and technology voids

left open by these languages, and have adopted design pat-

terns in one way or another to mimic what was learned by

programmers in Java and C++. Even the previously

script-oriented syntax of Visual Basic has blossomed into a

fully object-oriented language, via Visual Basic.NET.

Microsoft also added a Java-like language, which has

related syntax and framework structure, in the form of C#,

which is so much like Java that applying design patterns is

a relatively expected conjecture.

Most programmers new to object-oriented languages seem

to have the same dilemma when faced with whether or not

to use or learn design patterns: Why should I? Usually the

problem is that the ability and time required for learning

patterns-based programming is at a premium and the

return seems dubious. Someone not familiar with the why

vii



behind the methodology certainly will not continue on to

the what and where. So explaining to people new to the

concept why they should spend the time learning design

patterns can be difficult.

Another issue is availability and ease of dissemination of

the relevant data. There have been numerous books and

papers written on the uses and methodology of design pat-

terns, but to a junior developer looking to improve basic

skills or learn the skills needed to get a job, having to read

complicated texts to learn a new methodology or way of

thinking is out of the question. Senior developers looking to

upgrade current skills can have similar issues, in that to

augment their skill sets they have to do a large amount of

research just to be able to understand the basics. Most of

the texts available on design patterns are not easily refer-

enced, and require an expanded understanding of

object-oriented methodologies and patterns to even get

through, and full comprehension may require reading the

material several times from start to finish. There have been

a few attempts to “dumb down” the data, but these seem to

be more playful than useful, and leave project developers a

little turned off by the lack of serious content of the work.

As a developer, as well as a development manager, I can

assure you I have had the same problems. Whether learning

to use patterns or teaching them to others, I found there

was no quick and easy reference to explain or learn which

pattern is appropriate in which case and why. I often strug-

gled with the basics of object-oriented design when

learning patterns, and had to learn the hard way which

methods worked where. One thing I did find was that

design patterns were created and have evolved from the

work of everyday code practices, and many developers are

Introduction

viii



using them without actually knowing the established 23

patterns. When I first started to pattern, I often had to

search through many texts and websites, accessing several

sources to understand a particular pattern. This was hard

when trying to meet deadlines, since time was crucial, and

the only reason I persisted in learning was because I saw

there was a lot of value in what I did manage to

understand.

After several years of this kind of thing, I began to

write some articles for the Code Project site

(www.codeproject.com). I started with aspects of things

about which I saw value, but I thought were under-

documented. I wrote in a fashion that I would like to read,

something without a lot of complicated dialog that just

stated problems and solutions in code and explanations of

what I was doing and why. After a while I realized a lot of

people seemed to respond to what I had written. That was

when I decided that I should write this book.

Introduction

ix




