
 3

� � � � � � � � 	 
 �

Origin:� Grand 98�

Reason:� An object needes to be different subclasses at different times.�

Synopsis:�
Extend a class C by writing an additional class D with added funtionality that uses 
instances of C. �

Example:�
An airline reservation system has roles such as flight crew, passenger, ticket agent,etc. 
A person can play different roles at different times, and more than one role at a time. 
Inheritance makes this impossible. �

UML 
Class 
Diagram: 

Delegator Delegate
user usee

Uses 
�

1 1

 

Solution:�

Delegator �

Uses Delegate.� Flight crew, Passenger, etc.�

Delegate�

Specializes DelegateIF to a specific role.� Person�

Delegator IF�

Base class or interface of all Delegators.� Role�

�

Note:� The example has two layers of delegation: Role to Person and PersonWithRole to Role. �

Java API 
Usage: 

It is the basis for Java’s delegation event model. 

See also:� Bridge, Decorator, Facade, Proxy�

 

� 
 � � � 
 � � � �

Origin:� Grand 98�

Reason:� A class needs to be independent of services provided by another class.�

Synopsis:�
Abstract a class C by writing an interface IF. Clients access class C through 
interface IF. �

Example:�
A business application uses an Address class in a variety of objects, e.g., Vendors, 
Clients, Freight companies, etc. To make these objects less dependent of the 
details of the Address class, the objects should rather use an interface, AddressIF. �

UML Class 
Diagram: 

Client Service
uses

�
implements<<interface>>

IndirectionIF
�

1
 

Solution:�

Service�

A class that provides data and/or methods to the 
Client.�

Address�

Client� A class that uses the services of class Service.�
Vendor, Client, 
etc.�

ServiceIF�

Interface of class Service.� AddressIF�

�

Java API 
Usage: 

 Ex: Java.io.FilenameFilter is an interface to tell if a named file is included a 
collection. 


