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■ Standard C# arrays are
identical to their Java
counterparts.

■ C# provides two
different kinds of
multidimensional
arrays, rectangular and
jagged.

■ A rectangular array has
equal dimensions, a
jagged array does not.

■ The params keyword
can be used to specify
that an array of
unknown dimensions
will be passed to a
method.
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NOTE

Only nested classes
permit the use of the
new keyword. The new
modifier specifies that
the class hides an
inherited member by
the same name. Inner
classes and Inheritance
will be discussed in
Chapter 6.
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Frequently Asked
Questions

Q: Does C# support
multiple inheritance?

A: Yes and no—just like
Java, C# allows single
inheritance of classes
and multiple
inheritance of
interfaces.

Q: Does Java support
inner classes?

A: Yes. C# supports only
one kind of inner class
compared to Java’s
four.
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Delegates

■ Delegates are similar to
C/C++ function
pointers.

■ Delegates reference a
method.

■ Delegates are object-
oriented, type-safe,
and secure.

Unboxing

Unboxing is the act of
converting an object back
into a value type. The
syntax for this process
looks very similar to
explicit casting in Java, as
the following C# code
demonstrates:

int x = 29;

object xObj = x; //
Boxing

int x1 = (int)xObj;
// Unboxing
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Monitor.Wait()
Parameters

The Wait() method can
take on a variety of
parameters, including an
integer specifying the
number of milliseconds to
wait as well as a TimeSpan
structure. In the event that
the specified time expires
before it is notified by a
corresponding Pulse(),
Wait() returns a boolean
value of false.

Creating Assemblies

■ Assemblies are the C#
equivalent to Java’s
packages and are used
to segment
namespaces.

■ Assemblies in the .NET
architecture can be
written and compiled
in different languages,
and still work together.

■ All information about
an assembly is stored
in the assembly
manifest.

223_C#Java_toc.qxd  5/22/02  9:25 AM  Page xvii



xviii Contents

Summary 401
Solutions Fast Track 401
Frequently Asked Questions 403

Chapter 11 Working with I/O Streams 405
Introduction 406
File System 406

Directories 406
Files 411

Streams 415
Stream 416
FileStream 418
MemoryStream 419
BufferedStream 423

Encoding Data Types 423
Text 428

StreamReader and StreamWriter 429
StringReader and StringWriter 430

Network I/O 431
Server Side 432
Client Side 435

Synchronous vs.Asynchronous  438
Web Streams 441
Serialization 443

Creating a Serializable Object 443
Serializing an Object 444
Deserializing an Object 445
Transient Data 446
Deserialization Operations 446

Summary 450
Solutions Fast Track 451
Frequently Asked Questions 453

Chapter 12 Creating User Interfaces 
with Windows Forms 455

Introduction 456
Windows Form Classes 456

Windows Form Class Hierarchy 457

Debugging…

The Directory Separator

One of the most frequent
bugs when programming
with the file system is the
backslash used to identify
directory structures.
Notice the need to use
two backslashes in the
preceding example. This is
because the backslash is
an escape character, so it
is necessary to nullify the
first by using two
backslashes. An even
better solution is to
indicate a verbatim string
literal by placing the @
symbol in front of the
string, as follows:

String filename =
@"c:\Program Files";
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To interact with a Web
service you will need to
create a proxy object that
will act as the middleman
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and the service. The proxy
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■ Using Visual Studio.NET
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The interoperability
services in .NET could be
categorized into the
following scenarios:

■ .NET assembly
(managed) calling a
single COM DLL
(unmanaged)

■ .NET assembly
(managed) calling a
COM object or an
ActiveX control
(unmanaged)

■ COM DLL (unmanaged)
calling a .NET assembly
(managed)
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What Is J#?

J# is a complete
implementation of the
Java language
specification. J# allows
the majority of existing
Java applications to run
after recompilation or
after binary conversion.

223_C#Java_toc.qxd  5/22/02  9:25 AM  Page xxi


