
Contents

xi

Chapter 1 The .NET Philosophy 1
Introduction 2
Overview of the .NET Platform 2
Examining the .NET Framework Features 4

Multilanguage Development 5
Platform and Processor Independence 6
Automatic Memory Management 7
Versioning Support 7
Support for Open Standards 8
Easy Deployment 9
Interoperability with Unmanaged Code 10
Providing Security 11

Understanding the .NET Architecture 13
The Common Language Runtime 14
The .NET Framework Class Library 15
The Microsoft Intermediate Language (MSIL) 17
Just-In-Time Compilation 17

Following .NET Code from Source to Binary 18
Summary 21
Solutions Fast Track 22
Frequently Asked Questions 24

Chapter 2 Introducing C# 27
Introduction 28
The C# Language 28

Similarities with Java 29
Differences with Java 30

Getting Started 32
Installing the .NET Framework SDK 32

Java Code Cycle

Java Source (.java)

Java Compiler

Java Bytecode (.class)

Class Loader
Bytecode verifier

Java Virtual
Machine
(JVM)

Operating System

Just-in-time
Compiler

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xi

xii Contents

Creating Your First C# Program 33
Compiling and Running the Program 34
Using the Debugger Tool 37

Using Different IDEs 40
Visual Studio.NET 41
Other IDEs 44

A Stroll through C# 45
Creating the Media Player Application 45
Rapid Application Development

with Visual Studio.NET 54
Summary 60
Solutions Fast Track 60
Frequently Asked Questions 62

Chapter 3 Language Fundamentals 63
Introduction 64
Main() Method 64

Command Line Arguments 66
Return Values 69

Single-Line and Multiline Comments 72
XML Documentation Comments 74

Data Types and the Common Type System 82
Variables 85
Constants 87
Assignment Statements 87

Conversions between Data Types 90
Operators 92

Mathematical Operators 92
Assignment Operators 93
Increment and Decrement Operators 95
Relational Operators 96
Logical Operators 97
Bitwise Operators 98
Ternary Operator 99
Operator Precedence 100

Preprocessor Directives 100
#define and #undef 102

Mathematical
Operators

Operator Definition

+ Addition

– Subtraction

* Multiplication

/ Division

% Modulus

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xii

Contents xiii

#if, #elif, #else, and #endif 102
#error and #warning 106
#region and #endregion 107
#line 108

Namespaces 110
Summary 112
Solutions Fast Track 112
Frequently Asked Questions 115

Chapter 4 Programming Structures 117
Introduction 118
Strings 118

The WriteLine Method 118
Creating Strings 119
Verbatim String Literal 123
The StringBuilder Class 123
Using Regular Expressions 126

Flow Control 129
Branch Statements 129

The if/else Statement 129
The switch Statement 130

Iteration Statements 132
The while Loop 133
The do-while Loop 133
The for Loop 133

Jump Statements 134
The goto Statement 134
The break Statement 135
The continue Statement 135
The return Statement 136

Arrays 137
Declaring and Initializing Arrays 137
Using the params Keyword 140
Multidimensional Arrays 141

Rectangular Arrays 141
Jagged Arrays 144

Arrays

■ Standard C# arrays are
identical to their Java
counterparts.

■ C# provides two
different kinds of
multidimensional
arrays, rectangular and
jagged.

■ A rectangular array has
equal dimensions, a
jagged array does not.

■ The params keyword
can be used to specify
that an array of
unknown dimensions
will be passed to a
method.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xiii

xiv Contents

The foreach Statement 147
Indexers 150

Implementing an Indexer 151
Multiple Indexers 155
Multiparameter Indexers 157

Collections 159
Collection Interfaces 163

Exceptions 164
Catching Exceptions 164

The try, catch, finally Blocks 164
Throwing Exceptions 167

Creating New Exceptions 170
Rethrowing Exceptions 173

Summary 175
Solutions Fast Track 175
Frequently Asked Questions 178

Chapter 5 Objects and Classes 179
Introduction 180
Using Classes 180

Access Control 181
Class Modifiers 182
Abstract Classes 186
Sealed Classes 187
Instance Variables 187
Static Variables 189

Constants as Static Members 191
Using Methods 191

Access Modifiers 194
Method Parameters 195

The ref and out Method Parameters 197
Overloaded Methods 199

Creating Objects 202
Constructors 202

Overloading Constructors 204
Static Constructors 206

Destroying Objects 208

NOTE

Only nested classes
permit the use of the
new keyword. The new
modifier specifies that
the class hides an
inherited member by
the same name. Inner
classes and Inheritance
will be discussed in
Chapter 6.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xiv

Contents xv

Memory Management and Garbage
Collection 208

C#’s Destructor 209
The Finalize, Dispose, and Close

Methods 210
The using Statement 211

Summary 214
Solutions Fast Track 214
Frequently Asked Questions 215

Chapter 6 Object-Oriented Programming 217
Introduction 218
Inheritance 218

Defining a Base Class 221
Calling Base Class Constructors 222

Polymorphism 226
Abstract Classes 227
The abstract Modifier 232
The virtual Modifier 234
The override Modifier 237
The new Modifier 241

Inner Classes 244
Using Interfaces 246

Creating an Interface 247
Declaring Interfaces 248
Implementing Interfaces 249

The is Operator 253
The as Operator 258

Explicit Interface Implementation 258
Implementation Hiding 260

Summary 262
Solutions Fast Track 263
Frequently Asked Questions 264

Chapter 7 Other C# Features 267
Introduction 268
Properties 268
Read-Only Fields 271

Frequently Asked
Questions

Q: Does C# support
multiple inheritance?

A: Yes and no—just like
Java, C# allows single
inheritance of classes
and multiple
inheritance of
interfaces.

Q: Does Java support
inner classes?

A: Yes. C# supports only
one kind of inner class
compared to Java’s
four.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xv

xvi Contents

Enumerations 272
Boxing and Unboxing 276

Boxing 277
Unboxing 278

Operator Overloading 279
Unary Operator Overloading 283
Binary Operator Overloading 287
Equals() Method 287

User-Defined Conversions 288
The implicit Operator 289
The explicit Operator 291

Structs 293
Defining Structs 294
Using Structs 297

Summary 301
Solutions Fast Track 301
Frequently Asked Questions 304

Chapter 8 Delegates and Events 305
Introduction 306
Delegates 306
Using Delegates as Callbacks 307

Declaration 308
Instantiation 309
Invocation 311
Implementing Callbacks 312

Using Delegates for Event Handling 316
Event Handling in Java 317
Event Handling in C# 319

Using System.EventArgs 320
Creating and Handling Events 321

Multicasting 328
Order of Operations in Multicasting 331

Advanced Delegate Usage 331
Declaring Delegates as Static Members 332
Delegates and Thread Creation 333

Delegates

■ Delegates are similar to
C/C++ function
pointers.

■ Delegates reference a
method.

■ Delegates are object-
oriented, type-safe,
and secure.

Unboxing

Unboxing is the act of
converting an object back
into a value type. The
syntax for this process
looks very similar to
explicit casting in Java, as
the following C# code
demonstrates:

int x = 29;

object xObj = x; //
Boxing

int x1 = (int)xObj;
// Unboxing

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xvi

Contents xvii

Summary 335
Solutions Fast Track 335
Frequently Asked Questions 337

Chapter 9 Attributes and Assemblies 339
Introduction 340
Working with Attributes 340

Using Attributes 341
Creating Custom Attributes 346

Defining the AttributeUsage Attribute 347
Declaring an Attribute Class 348
Declaring Attribute Class Constructors

and Properties 349
Using Custom Attributes 351

Using Reflection 352
Creating Assemblies 360

Manifest Data 361
Building Assemblies 361

Multiple Module Assembly 362
Versioning 364

Creating Versioned Assemblies 365
Summary 369
Solutions Fast Track 370
Frequently Asked Questions 371

Chapter 10 Multithreading 373
Introduction 374
Threads 374
Creating Threads 375
Managing Threads 380

Using Suspend()/Resume() and Abort() 382
Scheduling Threads 384
Synchronizing Threads 389

Using the lock Statement 389
Using the Monitor Class 391

Avoiding Deadlock and Starvation 395

Developing &
Deploying…

Monitor.Wait()
Parameters

The Wait() method can
take on a variety of
parameters, including an
integer specifying the
number of milliseconds to
wait as well as a TimeSpan
structure. In the event that
the specified time expires
before it is notified by a
corresponding Pulse(),
Wait() returns a boolean
value of false.

Creating Assemblies

■ Assemblies are the C#
equivalent to Java’s
packages and are used
to segment
namespaces.

■ Assemblies in the .NET
architecture can be
written and compiled
in different languages,
and still work together.

■ All information about
an assembly is stored
in the assembly
manifest.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xvii

xviii Contents

Summary 401
Solutions Fast Track 401
Frequently Asked Questions 403

Chapter 11 Working with I/O Streams 405
Introduction 406
File System 406

Directories 406
Files 411

Streams 415
Stream 416
FileStream 418
MemoryStream 419
BufferedStream 423

Encoding Data Types 423
Text 428

StreamReader and StreamWriter 429
StringReader and StringWriter 430

Network I/O 431
Server Side 432
Client Side 435

Synchronous vs.Asynchronous 438
Web Streams 441
Serialization 443

Creating a Serializable Object 443
Serializing an Object 444
Deserializing an Object 445
Transient Data 446
Deserialization Operations 446

Summary 450
Solutions Fast Track 451
Frequently Asked Questions 453

Chapter 12 Creating User Interfaces
with Windows Forms 455

Introduction 456
Windows Form Classes 456

Windows Form Class Hierarchy 457

Debugging…

The Directory Separator

One of the most frequent
bugs when programming
with the file system is the
backslash used to identify
directory structures.
Notice the need to use
two backslashes in the
preceding example. This is
because the backslash is
an escape character, so it
is necessary to nullify the
first by using two
backslashes. An even
better solution is to
indicate a verbatim string
literal by placing the @
symbol in front of the
string, as follows:

String filename =
@"c:\Program Files";

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xviii

Contents xix

Creating a Windows Form Application 458
Using Controls 460

Adding Controls 461
Basic Controls 462

Buttons 462
Textboxes 464
Labels 464

Handling Events 465
Using a Text Editor 467
Using Visual Studio.NET 470

Creating a File Browser 473
Summary 476
Solutions Fast Track 476
Frequently Asked Questions 478

Chapter 13 Web Development with C# 479
Introduction 480
Web Services Overview 480

Using SOAP 481
Creating Web Services 482

Connecting to a Database 483
Building a Web Service 486
Running and Testing Your Web Service 489
Creating the Books Web Service Using
VS.NET 491

Consuming Web Services 495
Web Service Description Language 496
Creating Proxy Objects 498

Using the wsdl.exe Utility 498
Using Visual Studio.NET 499

Web Forms Overview 503
Differences between HTML and Web

Controls 504
Understanding HTML Controls 505
Understanding Web Controls 507

Using Web Form Controls 507
HTML Page Access Web Controls 509

Creating Proxy Objects

To interact with a Web
service you will need to
create a proxy object that
will act as the middleman
between your application
and the service. The proxy
object can be generated
from the WSDL file in two
ways:

■ Using the wsdl.exe
command line utility

■ Using Visual Studio.NET

Financial Calculator

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xix

xx Contents

Data Enabling Controls 509
DataGrid 510
DropDownList 510

Validation Control 511
Required Field Validator 511
RegularExpressions Validator 512

Complex Web Controls 513
Using the AdRotator Control 513
Using the Calendar Control 514

Creating a Web Form Application 515
Summary 522
Solutions Fast Track 522
Frequently Asked Questions 524

Chapter 14 Working with ActiveX,
COM, and Unmanaged Code 527

Introduction 528
Working with Unmanaged Code 529

Interoperability with Unmanaged Code 530
Managed Code Calling an

Unmanaged COM DLL Function 531
Managed Code Calling an Unmanaged

COM Object or an ActiveX Control 531
Unmanaged COM DLL Calling

Managed .NET Code 531
Working with the Platform Invocation Utility 532
Working with COM Components 535

Creating a Simple COM Component 536
Runtime Callable Wrappers 539

Creating a Runtime Callable
Wrapper for a COM Component 541

Building a Client for the RCW 544
Examining Runtime Callable Wrapper

Properties 546
Using Late Binding RCWs 548
Limitations of Using RCWs 551

Unmanaged Code

The interoperability
services in .NET could be
categorized into the
following scenarios:

■ .NET assembly
(managed) calling a
single COM DLL
(unmanaged)

■ .NET assembly
(managed) calling a
COM object or an
ActiveX control
(unmanaged)

■ COM DLL (unmanaged)
calling a .NET assembly
(managed)

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xx

Contents xxi

Working with ActiveX Controls 552
Differences between ActiveX

Controls and Windows Forms Controls 552
Using the ActiveX Control Importer

Utility (AxImp.exe) 553
Using Visual Studio .NET to Import
ActiveX Controls 555

Working with Pointers 559
Unsafe Code 559
The unsafe Keyword 560
The fixed Keyword 561

Summary 564
Solutions Fast Track 564
Frequently Asked Questions 566

Chapter 15 Microsoft Says JUMP—
Java User Migration Path 569

Introduction 570
What Is J#? 571

Features of Visual J# 572
Using Visual J# 573
Creating a Simple Visual J# Application 578
Summary 592
Solutions Fast Track 592
Frequently Asked Questions 593

Appendix A C# Keywords and
Java Equivalents 595

Index 601

What Is J#?

J# is a complete
implementation of the
Java language
specification. J# allows
the majority of existing
Java applications to run
after recompilation or
after binary conversion.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xxi

