
FOREWORD 

Programming is fun, but developing quality software is hard. In between the 
nice ideas, the requirements or the "vision," and a working software product, 
there is much more than programming. Analysis and design, defining how to 
solve the problem, what to program, capturing this design in ways that are easy 
to communicate, to review, to implement, and to evolve is what lies at the core of 
this book. This is what you will learn. 
The Unified Modeling Language (UML) has become the universally-accepted 
language for software design blueprints. UML is the visual language used to 
convey design ideas throughout this book, which emphasizes how developers 
really apply frequently used UML elements, rather than obscure features of the 
language. 
The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to 
describe design fragments, and reuse design ideas, helping developers leverage 
the expertise of others. Patterns give a name and form to abstract heuristics, 
rules and best practices of object-oriented techniques. No reasonable engineer 
wants to start from a blank slate, and this book offers a palette of readily usable 
design patterns. 
But software design looks a bit dry and mysterious when not presented in the 
context of a software engineering process. And on this topic, I am delighted that 
for his second edition, Craig Larman has chosen to embrace and introduce the 
Unified Process, showing how it can be applied in a relatively simple and 
low-ceremony way. By presenting the case study in an iterative, risk-driven, 
architecture-centric process, Craig's advice has realistic context; he exposes 
the dynamics of what really happens in software development, and shows the 
external forces at play. The design activities are connected to other tasks, and 
they no longer appear as a purely cerebral activity of systematic transformations 
or creative intuition. And Craig and I are convinced of the benefits of iterative 
development, which you will see abundantly illustrated throughout. 
So for me, this book has the right mix of ingredients. You will learn a systematic 
method to do Object-Oriented Analysis and Design (OOA/D) from a great 
teacher, a brilliant methodologist, and an "OO guru" who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni- 

xv 



XVI 

FOREWORD 

fled Process. He gradually presents more sophisticated design 
patterns—this will make the book very handy when you are faced with 
real-world design challenges. And he uses the most widely accepted 
notation. 
I'm honored to have had the opportunity to work directly with the author 
of this major book. I enjoyed reading the first edition, and was delighted 
when he asked me to review the draft of his second edition. We met several 
times and exchanged many e-mails. I have learned much from Craig, even 
about our own process work on the Unified Process and how to improve it 
and position it in various organizational contexts. I am certain that you will 
learn a lot, too, in reading this book, even if you are already familiar with 
OOA/D. And, like me, you will find yourself going back to it, to refresh your 
memory, or to gain further insights from Craig's explanations and experience. 
In an iterative process, the result of the second iteration improves on the first. 
Similarly, the writing matures, I suppose; even if you have the first edition, 
you'll enjoy and benefit from the second one. 
Happy reading! 

Philippe Kruchten 
Rational Fellow 
Rational Software 
Canada Vancouver, BC 




