Preface

XML documents contain regular but flexible structures. Developers can use those
structures as a framework on which to build powerful transformative and reporting
applications, as well as to establish connections between different parts of documents.
XPath and XPointer are two W3C-created technologies that make these structures
accessible to applications. XPath is used for locating XML content within an XML
document; XPointer is the standard for addressing such content, once located. The two
standards are not typically used in isolation but in support of two critical extensions to the
core of XML: Extensible Stylesheet Language Transformations (XSLT) and XLink,
respectively. They are also finding wide use in other applications that need to reference
parts of documents. These two closely related technologies provide the underpinning of
an enormous amount of XML processing.

Who Should Read This Book?

Presumably, if you're browsing a book like this, you already know the rudiments of XML
itself. You may have experimented with XSLT but, if so, haven't completely mastered it.
(You can't do much in XSLT without first becoming comfortable with at least the basics
of XPath.) Similarly, you may have experimented with XLinks; in this case, you've
probably focused on linking to entire documents other than the one containing the link.
XPointer will be your tool of choice for linking to portions of documents — external to or
within the document where the XLink reference is made.

As support for XPath is integrated into the Document Object Model (DOM), DOM
developers may also find XPath a convenient alternative to walking through document
trees. Finally, developers interested in hypertext and other applications where references
may have to cross node boundaries will find a thorough explanation of XPointer, the
leading technology for creating those references.

You need not be an XML document author or developer to read this book. The XPath
standard is fairly mature, and therefore is already incorporated in a number of high-level
tools. XPointer, by contrast, is not yet a final standard; for this reason, the use of
XPointers will probably be limited to experimental purposes in the short term.

Regardless of whether you're coming at the subject as primarily a document author or
designer, or as a developer, XPath and XPointer can be revisited as often as you need it:
for reference or as a refresher.

Who Should Not Read This Book?

If you don't yet understand XML (including XML namespaces) and have never looked at
XSLT, you probably need to start with an XML book. John E. Simpson's Just XML
(Prentice-Hall PTR) and Erik Ray's Learning XML (O'Reilly & Associates) are both good
places to start.



Organization of the Book

Chapter 1 introduces you to the foundations of XPath and XPointer, and where they're
used.

Chapter 2 gets you started with XPath's node tree model for documents and XPath
syntax, as well as the set of node types accessible in XPath.

Chapter 3 moves deeper into XPath, detailing the use of XPath axes, node tests, and
predicates.

Chapter 4 explains the tools XPath offers for manipulating content once it has been
located.

Chapter 5 demonstrates XPath techniques with over 30 examples using a wide variety of
XPath parts.

Chapter 6 examines the upcoming 2.0 version of XPath, including new features and
interoperability issues.

Chapter 7 explains XPointer's perspective on XML documents and how its use in URLs
requires some changes from basic XPath.

Chapter 8 explains the details of using XPointer syntax, including "bare names," child
sequences, and interactions with namespaces.

Chapter 9 delves deeper into XPointer, exploring the techniques XPointer offers for
referencing points and ranges of text, not just nodes.

Conventions Used in This Book
The following font conventions are used throughout the book:
Constant width is used for:
e Code examples and fragments
e Anything that might appear in an XML document, including element names, tags,
attribute values, entity references, and processing instructions
e Anything that might appear in a program, including keywords, operators, method
names, class names, and literals

Constant-width bold is used for:

e User input
o Signifying emphasis in code statements



Constant-width italic is used for:

e Replaceable elements in code statements
Italic 1s used for:

e New terms where they are defined

e Pathnames, filenames, and program names
e Host and domain names (www.xml.com)

o This icon indicates a tip, suggestion, or general note.

e

- @ This icon indicates a warning or caution.

Please note that XML (and therefore XPath and XPointer) is case sensitive. Therefore, a
BATTLEINFO element would not be the same as a battleinfo or BattleInfo element.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/xpathpointer

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com



http://www.oreilly.com/catalog/xpathpointer
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Acknowledgments

It's almost laughable that any technical book has just a few names on the cover, if that
many. Such books are always the product of many minds and talents being brought to
bear on the problem at hand.

For their help with XPath and XPointer, 1 am especially indebted to a number of
individuals. Simon St.Laurent, my editor, has for years been a personal hero; I was
flattered that he asked me to write the book in the first place and am grateful for his
patience and support during its development. I came to XPath in particular by way of
XSLT, and for this reason I happily acknowledge the implicit contributions to this book
from that standard's user community, especially (in alphabetical order): Oliver Becker,
David Carlisle, James Clark, Bob DuCharme, Tony Graham, G. Ken Holman, Michael
Kay, Evan Lenz, Steve Muench, Dave Pawson, Wendell Piez, Sebastian Rahtz, and Jeni
Tennison. J. David Eisenberg, Evan Lenz, and Jeni Tennison served as technical
reviewers during the book's final preproduction stage; words cannot express how grateful
I am for their patience, thoroughness, and good humor. Acknowledging the (unwitting or
explicit) help of all those people does not, of course, imply that they're in any way
responsible for the content of this book; errors and omissions are mine and mine alone.

I am also grateful to my colleagues and superiors in the City of Tallahassee's Public
Works and Information Systems Services departments for their support during the writing
of XPath and XPointer. They have endured far more than their deserved share of blank,
preoccupied stares from me over the last few months.

Finally, to my wife Toni: to paraphrase Don Marquis's dedication to his Archie and
Mehitabel, thanks "for Toni knows what/and Toni knows why."



	Table of Content
	Preface
	Who Should Read This Book?
	Who Should Not Read This Book?
	Organization of the Book
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introducing XPath and XPointer
	1.1 Why XPath and XPointer?
	1.2 Antecedents/History
	1.2.1 DSSSL
	1.2.2 XSL
	1.2.3 TEI
	1.2.4 Intermedia

	1.3 XPath, XPointer, and Other XML-Related Specs
	
	Figure 1-1. Interdependencies among XML-related standards

	1.3.1 Specs Dependent on XPath and XPointer

	1.4 XPath and XPointer Versus XQuery

	Chapter 2. XPath Basics
	2.1 The Node Tree: An Introduction
	
	Figure 2-1. Above XML document represented as a tree of nodes


	2.2 XPath Expressions
	2.2.1 Location Steps and Location Paths
	2.2.2 Expression Syntax
	2.2.2.1 Tokens
	2.2.2.2 Delimiters
	2.2.2.3 Combining tokens and delimiters into complete expressions


	2.3 XPath Data Types
	2.3.1 Strings
	2.3.2 Numeric Values
	2.3.3 Boolean Values

	2.4 Nodes and Node-Sets
	2.4.1 Node Properties
	2.4.1.1 Node names
	2.4.1.2 Document order
	2.4.1.3 Family relationships

	2.4.2 Node-Sets
	2.4.3 Node Types
	2.4.3.1 The root node
	2.4.3.2 Element nodes
	Figure 2-2. An XML document with no whitespace
	Figure 2-3. The same XML document with whitespace
	2.4.3.3 Attribute nodes
	2.4.3.4 PI nodes
	2.4.3.5 Comment nodes
	2.4.3.6 Text nodes
	2.4.3.7 Namespace nodes
	2.4.3.8 XPath node types and the XML Infoset


	2.5 Node-Set Context
	2.6 String-Values
	
	Table?2-1. String-values, by node type

	2.6.1 String-Value of a Node-Set


	Chapter 3. Location Steps and Paths
	3.1 XPath Expressions
	3.1.1 The Filesystem Analogy
	3.1.2 Points of Similarity, Points of Difference

	3.2 Location Paths
	3.2.1 The Importance of Context
	Figure 3-1. Filtering content via successive steps in a location path

	3.2.2 Absolute Versus Relative Location Paths
	3.2.3 Compound Location Paths

	3.3 Location Steps
	3.3.1 The Big Picture
	Figure 3-2. Narrowing the field of vision: "seeing" just boats with sails in a particular direction

	3.3.2 The Node Test
	Table?3-1. Location step node tests

	3.3.3 The Axis
	Table?3-2. Location step axes
	3.3.3.1 Defaults and shortcuts
	3.3.3.2 Restrictions by context node type
	Table?3-3. Valid axis/context node combinations
	3.3.3.3 Axes and efficiency

	3.3.4 The Predicate
	Table?3-4. Boolean operators in XPath predicates
	3.3.4.1 Nesting predicates
	3.3.4.2 Compound predicates
	3.3.4.3 Predicates with a single value and no operator
	3.3.4.4 Special case: numeric-valued predicates
	3.3.4.5 "Stacked" predicates


	3.4 Compound Location Paths Revisited

	Chapter 4. XPath Functions and Numeric Operators
	4.1 Introduction to Functions
	4.1.1 What Functions Do
	4.1.2 Functions Within Functions

	4.2 XPath Function Types
	4.2.1 Node-Set Functions
	Table?4-1. Node-set functions
	4.2.1.1 last()
	4.2.1.2 position()
	4.2.1.3 count(nodeset)
	4.2.1.4 id(anytype)
	4.2.1.5 id() and node-set arguments
	4.2.1.6 local-name(nodeset?)
	4.2.1.7 namespace-uri(nodeset?)
	4.2.1.8 name(nodeset?)

	4.2.2 String Functions
	Table?4-2. String functions
	4.2.2.1 string(anytype?)
	4.2.2.2 concat(string1, string2, ...)
	4.2.2.3 starts-with(string1, string2)
	4.2.2.4 contains(string1, string2)
	4.2.2.5 substring(string, number1, number2?)
	4.2.2.6 substring-before(string1, string2) and substring-after(string1, string2)
	4.2.2.7 string-length(string?)
	4.2.2.8 normalize-space(string?)
	4.2.2.9 translate(string1, string2, string3)

	4.2.3 Boolean Functions
	Table?4-3. Boolean functions
	4.2.3.1 boolean(anytype)
	4.2.3.2 not(boolean)
	4.2.3.3 true() and false()
	4.2.3.4 lang(string)

	4.2.4 Numeric Functions
	Table?4-4. Numeric functions
	4.2.4.1 number(anytype?)
	4.2.4.2 sum(nodeset)
	4.2.4.3 floor(number) and ceiling(number)
	4.2.4.4 round(number)


	4.3 XPath Numeric Operators
	
	Table?4-5. XPath numeric operators

	4.3.1 div
	4.3.2 mod


	Chapter 5. XPath in Action
	5.1 XPath Visualiser: Some Background
	
	Figure 5-1. Startup view of XPath Visualiser
	Figure 5-2. A document loaded into XPath Visualiser


	5.2 Sample XML Document
	
	Figure 5-3. Sample astrological document loaded into XPath Visualiser


	5.3 General to Specific, Common to Far-Out
	5.3.1 The Node Test
	Figure 5-4. "Locating" the root node
	Figure 5-5. Locating all elements with the same name
	Figure 5-6. Locating all comments
	Figure 5-7. Locating a PI
	Figure 5-8. Locating text nodes
	Figure 5-9. Locating all elements, comments, PIs, and text nodes
	Figure 5-10. Locating attribute nodes
	Figure 5-11. Locating namespace nodes
	Figure 5-12. Locating all nodes in a document

	5.3.2 Axes
	Figure 5-13. Locating the parents of any part elements
	Figure 5-14. Using the parent:: axis to locate attributes of a comment's parent element
	Figure 5-15. Selecting all siblings of a PI in the prolog
	Figure 5-16. Locating elements along the following:: axis
	Figure 5-17. Locating an element's ancestors
	Figure 5-18. Adding an element to its ancestor node-set, using the ancestor-or-self:: axis

	5.3.3 Predicates
	Figure 5-19. Trimming a node-set using a predicate
	Figure 5-20. Selecting all elements with an attribute whose value does not meet a condition
	Figure 5-21. Selecting all elements lacking a particular attribute with a particular value
	Figure 5-22. Locating nodes based on their positions
	Figure 5-23. Node position on a reverse-direction axis
	Figure 5-24. Using last() on a reverse-direction axis

	5.3.4 Functions
	Figure 5-25. Locating href pseudoattributes and xlink:href attributes with a single location path
	Figure 5-26. Using boolean() to locate all elements that are parents of other elements
	Figure 5-27. Using XPath string functions

	5.3.5 Sublimely Ridiculous
	Figure 5-28. Locating all "plural body parts"
	Figure 5-29. Locating the sign elements with "plural body parts"
	Figure 5-30. Locating the main name element for each sign with "plural body parts"
	Figure 5-31. Locating the true name of each sign with "plural body parts"
	Figure 5-32. Locating signs with more than one ruling planet
	Figure 5-33. Locating the image file for the symbol of each sign with more than one ruling planet
	Figure 5-34. Locating all Unicode and image-file representations of the symbols for all signs with more than one ruling planet



	Chapter 6. XPath 2.0
	6.1 General Goals
	6.1.1 Simplify Manipulation of XML Schema-Typed Content
	6.1.2 Simplify Manipulation of String Content
	6.1.3 Support Related XML Standards
	6.1.4 Improve Ease of Use
	6.1.5 Improve Interoperability
	6.1.6 Improve i18n Support
	6.1.7 Maintain Backward Compatibility
	6.1.8 Enable Improved Processor Efficiency

	6.2 Specific Requirements
	
	Table?6-1. XPath 2.0 requirements, by general goal

	6.2.1 XPath 2.0 MUSTs
	6.2.1.1 Express its data model in terms of the XML Infoset (1.1)
	6.2.1.2 Provide common core syntax and semantics for XSLT and XML Query (1.2)
	Figure 6-1. XPath 2.0, XSLT 2.0, and XML Query 1.0
	6.2.1.3 Support explicit "for any" and "for all" Boolean operations (1.3)
	6.2.1.4 Extend the existing set of aggregate functions (1.4)
	6.2.1.5 Loosen restrictions on location steps (2.1)
	6.2.1.6 Provide a conditional expression (2.2)
	6.2.1.7 Define consistent implicit semantics for collection-valued subexpressions (2.3)
	6.2.1.8 Support string matching with regular expressions (3)
	6.2.1.9 Define the operator matrix and conversions (4.1)
	6.2.1.10 Allow scientific notation for numbers (4.2)
	6.2.1.11 Define cast and constructor functions (4.3)
	6.2.1.12 Support accessing the simple-type values of elements and attributes (4.5)
	6.2.1.13 Define the behavior of operators for null arguments (4.6)

	6.2.2 XPath 2.0 SHOULDs
	6.2.2.1 Maintain backward compatibility with XPath 1.0 (1.5)
	6.2.2.2 Provide intersection and difference functions (1.6)
	6.2.2.3 Support the unary plus operator (1.7)
	6.2.2.4 Simplify string replacement (2.4.1)
	6.2.2.5 Simplify string padding (2.4.2)
	6.2.2.6 Simplify string case conversions (2.4.3)
	6.2.2.7 Support aggregation functions over collection-valued expressions (2.5)
	6.2.2.8 Add a "list" data type (4.4)
	6.2.2.9 Select elements/attributes based on an explicit XML Schema type (5.1)
	6.2.2.10 Select elements/attributes based on an XML Schema type hierarchy (5.2)
	6.2.2.11 Select elements based on XML Schema substitution groups (5.3)
	6.2.2.12 Support lookups based on XML Schema unique constraints and keys (5.4)



	Chapter 7. XPointer Background
	7.1 XPointer and Media types
	7.2 Some Definitions
	7.2.1 Resource
	7.2.2 Subresource
	7.2.3 Location
	7.2.4 Location-set
	7.2.5 Point
	Figure 7-1. Point-type locations

	7.2.6 Range
	7.2.7 Points and Ranges: Flattening the Logical Hierarchy

	7.3 The Framework
	7.4 Error Types
	7.4.1 Syntax Errors
	7.4.2 Resource Errors
	7.4.3 Subresource Errors

	7.5 Encoding and Escaping Characters in XPointer
	7.5.1 Characters Significant to XPointer Itself
	7.5.2 URI-Significant Characters
	7.5.2.1 URIs versus IURIs

	7.5.3 Characters in XML Documents
	7.5.4 Progressive Escaping
	7.5.4.1 Progressive escaping: a (perverse) example



	Chapter 8. XPointer Syntax
	8.1 Shorthand Pointers
	8.2 Scheme-Based XPointer Syntax
	8.2.1 The Scheme
	8.2.2 The schemedata
	8.2.3 Contents of the xmlns() Scheme
	8.2.4 Contents of the element() Scheme
	8.2.5 Combining Names and Child Sequences
	8.2.6 Contents of the xpointer() Scheme
	8.2.7 Custom Schemes
	8.2.8 Multiple Pointer Parts
	8.2.8.1 "Failure-proofing" XPointers
	8.2.8.2 Declaring and using namespaces
	8.2.8.3 Mixing it up


	8.3 Using XPointers in a URI

	Chapter 9. XPointer Beyond XPath
	9.1 Why Extend XPath?
	
	Figure 9-1. Hypothetical web document (as displayed)
	Figure 9-2. Hypothetical web document (with selection)


	9.2 Points and Ranges
	9.2.1 Points
	Figure 9-3. Point locations in an element with a text-node child
	Figure 9-4. A "location tree" view of Figure 9-3
	9.2.1.1 Node points versus character points
	9.2.1.2 Point syntax
	9.2.1.3 Points as "nodes"
	Table?9-1. Axes and points
	9.2.1.4 Points and general entities

	9.2.2 Ranges
	9.2.2.1 What can be in a range
	9.2.2.2 Range syntax
	9.2.2.3 Ranges as "nodes"
	9.2.2.4 Covering ranges
	Table?9-2. Covering ranges
	Table?9-3. Covering range examples


	9.3 XPointer Extensions to Document Order
	
	Table?9-4. Document order and location types

	9.3.1 XPointer Document Order Extensions: Examples
	Table?9-5. XPointer document order examples


	9.4 XPointer Functions
	
	Table?9-6. XPointer functions

	9.4.1 start-point(locset)
	9.4.2 end-point(locset)
	9.4.3 range-to(locset)
	9.4.4 string-range(locset, string, number1?, number2?)
	9.4.5 range(locset)
	9.4.6 range-inside(locset)
	Table?9-7. range-inside() behavior, by location type

	9.4.7 here()
	9.4.8 origin()


	Appendix A. Extension Functions for XPath in XSLT
	A.1 Additional Functions in XSLT 1.0
	
	Table?A-1. Additional functions provided by XSLT 1.0


	A.2 EXSLT Extensions
	A.2.1 EXSLT Functions Module
	Table?A-2. EXSLT Functions module elements

	A.2.2 EXSLT Dates-and-Times Module
	Table?A-3. Table A-3: EXSLT Dates-and-times module element
	Table?A-4. EXSLT Dates-and-times module functions

	A.2.3 EXSLT Dynamic Module
	Table?A-5. EXSLT Dynamic module functions

	A.2.4 EXSLT Common Module
	Table?A-6. EXSLT Common module element
	Table?A-7. EXSLT Common module functions

	A.2.5 EXSLT Math Module
	Table?A-8. EXSLT Math module functions

	A.2.6 EXSLT Regular Expressions Module
	Table?A-9. EXSLT Regular Expressions module functions

	A.2.7 EXSLT Sets Module
	Table?A-10. EXSLT Sets module functions

	A.2.8 EXSLT Strings Module
	Table?A-11. EXSLT Strings module functions



	Colophon



