
CONTENTS

List of Figures xv

Acknowledgments xvii

Chapter 1 Introduction 1

1.1 The Retention of Software Jobs 2

1.2 Depth of Experience 2

1.3 The Scope of This Book 3

1.4 The Nature of Computer Science 4

1.5 The Future of Computer Science 4

1.6 The Essence of Philosophy 5

1.7 Why Autonomy? 6

1.8 An Architecture for Autonomy 8

1.9 Other Notes 9

Chapter 2 Prologue 11

2.1 How This Book Originated 11

2.2 The Importance of Management 12

2.3 The Tie-in with Autonomy 13

2.4 Major Themes of This Book 14

2.5 The Challenge of a New Idea 14

2.6 The Importance of Visualization 15

2.7 The Move Toward Autonomy 16

2.8 Why I Wrote This Book 17

2.9 Merging Theory and Practice 18

2.10 The Pace of Computer Science 19

2.11 The Importance of Cognitive Dynamics 21

Chapter 3 The Philosophical Foundations of Computer

Software Design 23

3.1 The Philosophical Origins of Computer Science 23

3.2 Influence of the Cognitive Philosophers 25

3.3 Abstracting the Human Thought System 27

3.4 The Philosophical Foundations of Software

Development 28

3.5 The Phenomenon of Reality 29

vii



3.6 The Phenomenon of Subjectivity 30

3.7 Low-Cost Software Development 31

3.8 ‘‘On Budget and On Schedule’’ 33

3.9 The Time to Completion: Schedule 34

3.10 Philosophy and Successful Design 35

Chapter 4 The Philosophical Imperatives of Architectural Design 36

4.1 The Manager as Architect 36

4.2 The Manager as Teacher 37

4.3 The Manager as Social Worker 38

4.4 The Manager as Axman 39

4.5 The Philosophical Imperatives of Architectural

Design 39

4.6 Availability of the Manager 40

4.7 Project Manager: 10 Key Attributes and

Responsibilities 40

4.8 Philosophical Aspects of Engineering 43

4.9 The Importance of Finishing the Job 44

4.10 Visualizing an Architecture 44

4.11 The Role of Intuition in Design 47

4.12 ‘‘Sufficient Reality’’ and Inference in the Design

Process 48

4.13 Dialectics in the Achievement of Sufficient

Reality 49

4.14 The Relationship of Logic to Software

Architectures 50

4.15 The Logic of the Systems Design 53

Chapter 5 Project and Task Organization 54

5.1 The Role of Organization 55

5.2 The Ability to Organize 57

5.2.1 Traditional Hierarchical Project Organization 57

5.3 The Difficulty of Communication 60

5.4 The Title of ‘‘Manager’’ 61

5.5 The Flat, Nonhierarchical Organization 61

5.6 Projects, Tasks, and Work Units 65

5.7 Large Organizations and Staffing 66

5.8 Staffing Up: The Initial Team 69

5.8.1 The Initial Team 69

5.8.2 Phase One Team Expansion 70

5.8.3 Phase Two Team Expansion 72

5.9 Balancing Hardware and Software 73

5.10 Incremental Deliveries 75

5.11 Functional Organization 76

5.12 Interface Protocols of the Organization 77

viii CONTENTS



5.13 Completion of the Task 77

5.14 Detecting the ‘‘Fraud’’ 78

Chapter 6 The Philosophy of Communication 80

6.1 ‘‘Sanity Is an Achievement!’’ 81

6.2 Gauging Understanding 82

6.3 Internal Team Communication Protocols 82

6.4 External Team Communication Protocols 84

6.5 Technical English as the Medium 85

6.6 Engineers as Technical Writers 87

6.7 Documentation: Articulation of the Requirements

and Design 87

6.8 The SRD: Software Requirements Document 88

Chapter 7 Software Management Standards 91

7.1 Three Good Standards 91

7.1.1 JPL-STD-D-4000 92

7.1.2 MIL-STD-498 92

7.1.3 DOD-STD-2167A 92

7.2 Aspects Addressed by a Standard 93

7.3 Preparing to Select the Standard 94

7.4 Standards for Implementation 96

7.4.1 Waiving the Standard 97

Chapter 8 The Estimation of Software Cost 98

8.1 Sponsor Costing Issues 99

8.2 Types of Cost Estimates 101

8.3 ‘‘Lines of Code’’ Metrics 101

8.4 The Major Work Areas, Functions, and Tasks that

Must be Included in the Estimation of Cost 103

8.5 The Detailed Cost Estimate 105

8.6 The SRD as a Contract 106

Chapter 9 The Exercise of Project Control 108

9.1 The Functions of Project Control and Oversight 109

9.2 The Requirements Phase 110

9.3 Contents of the Software Requirements Document 111

9.4 The Design Phase 113

9.5 The Implementation Phase 113

9.6 The Test and Integration Phase 115

9.7 Personnel Issues 116

9.8 The Hacker and Other Personalities 118

9.9 The Buck Stops at the Top 119

9.10 How People Think, Pay Attention, and

Remember 121

CONTENTS ix



Chapter 10 The Development Process Methodology 125

10.1 The ‘‘Design Hub’’ as Implementation Tool 126

10.2 The Architecture Definition Process 127

10.3 The Use of Large-Scale Representations 129

10.4 Design Team Meetings 130

10.5 Rapid Development versus Prototyping 131

10.6 The Traditional Development Methodology 132

10.7 Action Items, Change Requests, and Software

Discrepancy Reports 134

10.8 Resolving Problems and Impasses 134

Chapter 11 The Development of System Architectures 136

11.1 Pushing the Architecture 137

11.2 The Point of ‘‘Acceptable Reality’’ 138

11.3 The Importance and Imperative of Visualizing

Phenomena 140

11.4 Traditional Architectures 141

11.5 The Inferred Architecture 142

11.6 The Redesign or Upgrading of Existing

Systems 144

11.7 The Approach to New Systems 145

Chapter 12 The Impact of Leadership on Software

Development 146

12.1 Recognizing Good Leadership 146

12.2 The Concepts of Management and Leadership 148

12.3 Rewarding Failure 149

12.4 The Leader’s Subordinate 151

12.5 Indications of Poor Leadership 152

12.6 Leadership and Ethics 153

12.7 The Attributes of Leadership 153

12.7.1 Unselfishness 154

12.7.2 The Welfare of Others 154

12.7.3 Ambition 154

12.7.4 Integrity 154

12.7.5 Loyalty 155

12.7.6 Knowledge 155

12.7.7 Tact 156

12.7.8 Judgment 157

12.7.9 Initiative 157

12.7.10 Bearing 158

12.7.11 Courage 158

12.7.12 Decisiveness 159

x CONTENTS



12.7.13 Dependability 159

12.7.14 Dynamic Energy 160

12.7.15 Enthusiasm 161

12.7.16 Empowerment 163

12.8 The Ramifications of Failure 164

12.9 The Absence of Leadership 165

12.9.1 Absenteeism 166

12.9.2 Hidden Agendas 166

12.9.3 Communication Gap 167

12.9.4 Poorly Defined Goals 167

12.10 The Basis in Leadership for Failure 168

12.10.1 Personal Struggles 168

12.10.2 The ‘‘Machiavellian Prince’’ 169

12.11 The impact of Poor or Nonexistent Leadership 169

12.11.1 Conquering the Organization 170

Chapter 13 Management of Software Systems Development 172

13.1 Self-Respect in the Manager 173

13.2 The Ethical Workplace 173

13.3 Narcotics Use in the Workforce 174

13.4 Spotting Narcotics Addicts 177

13.5 Courage and Dynamic Energy in Management 178

13.6 The Traveling Manager 180

13.7 The Manager as Architect 181

13.8 The Phenomenon of Decision Making 182

13.9 The Concept of ‘‘Ability’’ 186

13.10 Manager: Administrator or Leader? 187

13.11 Authority, Responsibility, and Accountability 189

13.12 The Issue of Contempt 189

13.13 Management: The Fulcrum of Project Execution 191

13.14 The Ascendance of Mediocrity 191

13.15 The Pitfalls of Staffing Up 193

13.16 Salary Issues 195

13.17 Contracting Out Work 196

13.18 Evaluating Proposals 197

13.19 Cost Bidding too Early 198

Chapter 14 Four Case Studies of Low-Cost Systems 200

14.1 Case Study One: The Joint Theater Level

Simulation (JTLS) 202

14.1.1 The Beginnings of JTLS 204

14.1.2 Estimating the Cost of War 205

CONTENTS xi



14.1.3 Starting up the Effort 208

14.1.4 Costly Lessons Learned 209

14.2 Case Study Two: The Global Decision Support

System (GDSS) 211

14.2.1 GDSS System Size 211

14.2.2 The History and Background of GDSS 212

14.2.3 Expediting the System 213

14.2.4 The Euler Sphere 214

14.2.5 Beyond State of the Art 214

14.2.6 A Replicated, Survivable, Synchronous

Database Management System 214

14.2.7 The Ultra Large Screen Display System 215

14.2.8 The Local Area Networks 215

14.2.9 The Wide Area Network 215

14.2.10 Distributed Client/Server Technology 215

14.2.11 Message Bus 215

14.2.12 The GDSS Software Architecture 217

14.2.13 Accepting the Challenge 220

14.2.14 Initial Conditions 220

14.2.15 Rapid Development: A Totally Different

Approach 221

14.2.16 There Can Be Only One! 223

14.2.17 GDSS End-to-End Architecture 224

14.2.18 Architecting the Development Effort 224

14.2.19 Inferential Systems Architecture 225

14.2.20 The GDSS System Software Layer 226

14.2.21 Applications Language Selection 227

14.2.22 Project Documentation 228

14.2.23 Finding an Ada Expert 228

14.2.24 Testing and Database Design 229

14.2.25 Additional Difficulties 231

14.3 Case Study Three: The Topex TCCS System 233

14.3.1 The Topex TCCS System 233

14.3.2 System Description 233

14.3.3 The Initial Conditions 235

14.3.4 Project Constraints 235

14.3.5 Implementation Considerations 236

14.3.6 Development of TOPEX TCCS 237

14.3.7 Agreeing to Do the Job 238

14.3.8 Ground Truth 239

14.3.9 Start of Project Development 239

14.3.10 Architecting the Environment 241

14.3.11 Hardware Procurement, Software

Procurement 242

14.3.12 The Relationship with the Contractor 244

xii CONTENTS



14.3.13 Test Plan Scheduling 245

14.3.14 Adherence to a Standard 246

14.4 Case Study Four: The Jason 1 TCCS

System (JTCCS) 246

14.4.1 The Jason 1 TCCS System 247

14.4.2 System Description 247

14.4.3 The Initial Conditions 248

14.4.4 Implementation Considerations 249

14.4.5 The JTCCS Architecture 251

Chapter 15 Operations, Operators, and Users: Their Impact

on Cost 257

15.1 The Operational Requirement 258

15.2 The Lack of an Operational Requirement 259

15.3 The Operations Scenario 259

15.4 The Cost of Operators and Analysts 260

15.5 The Voyager Project Operations Center 261

15.6 War Gaming 262

15.7 The Value of Simulation 264

15.8 Funds: A Perspective 264

Chapter 16 The Autonomous Cognitive System 266

16.1 Introduction 266

16.2 The Scale of Autonomy 267

16.2.1 Category IV Autonomous Cognitive System:

Superman 267

16.2.2 Category III Autonomous Cognitive System:

Perseus 268

16.2.3 Category II Autonomous Cognitive System:

Robot 269

16.2.4 Category I Autonomous Cognitive System:

Automaton 269

16.3 ‘‘I Will, Because I Can’’ 270

16.4 Toward Cognitive Dynamics 271

16.5 Building an Autonomous System 271

16.6 An Appropriate Model 272

16.7 System-Level Requirements for Autonomy 273

16.8 Architectural Domains for Autonomy 274

16.8.1 Domain I: The Human Thought Architecture

Model (Functional Architecture) 274

16.8.2 Domain II: The Human Thought Process

Model (Common Software Services) 275

16.9 In Summary 277

CONTENTS xiii



Epilogue 279

The Science of Computer Science 279

The Professional Software Manager 279

Cognitive Philosophy in a Modern Technical Context 280

Cognitive Dynamics is the Unifying Theory 281

The Issue of Software Cost 281

The Paradigm Shift of Cognitive Dynamics 282

Glossary of Acronyms 283

Index 287

xiv CONTENTS



LIST OF FIGURES

Figure 1 Computer Science Architectural Interpretation of

Kantian Philosophy

Figure 2 The Requirements and Design Process: Dialectically

Achieving ‘‘Sufficient Reality’’

Figure 3 Project Organization: Traditional Hierarchical Approach:

Isolated Control

Figure 4 Project Organization: Flat, Nonhierarchical Approach:

Optimal Control (Front View)

Figure 5 Project Organization: Flat, Nonhierarchical Approach:

Optimal Control (Overhead)

Figure 6 Estimation of Software Cost: Software Work-Estimation

Worksheet

Figure 7 Two General Approaches to System Development:

Known & Unknown Requirements

Figure 8 The Kantian Thought Process: Decision-Making Schema

Figure 9 Joint Theater Level Simulation: Operating System-dependent

Architecture

Figure 10 Global Decision Support System: Wide Area Network

Configuration

Figure 11 Global Decision Support System: Integrated Software

Functional Design

Figure 12 Global Decision Support System: Official Memo of

Recognition

Figure 13 Topex/Poseidon TCCS Software Architecture

Figure 14 The Topex War Room: The Design Hub as an

Implementation Environment

Figure 15 JASON-1 TCCS Software Architecture

Figure 16 JASON-1 TCCS Pluggable Architecture

Figure 17 JASON-1 TCCS User Interface Client/Server Architecture

xv






