
Preface

Programming is understanding.
– Kristen Nygaard

I find using C++ more enjoyable than ever. C++’s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed for
its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also suc-
ceeded at tasks I hadn’t even dreamt of.

This book introduces standard C++† and the key programming and design techniques supported
by C++. Standard C++ is a far more powerful and polished language than the version of C++ intro-
duced by the first edition of this book. New language features such as namespaces, exceptions,
templates, and run-time type identification allow many techniques to be applied more directly than
was possible before, and the standard library allows the programmer to start from a much higher
level than the bare language.

About a third of the information in the second edition of this book came from the first. This
third edition is the result of a rewrite of even larger magnitude. It offers something to even the
most experienced C++ programmer; at the same time, this book is easier for the novice to approach
than its predecessors were. The explosion of C++ use and the massive amount of experience accu-
mulated as a result makes this possible.

The definition of an extensive standard library makes a difference to the way C++ concepts can
be presented. As before, this book presents C++ independently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a ‘‘bottom up’’
order so that a construct is used only after it has been defined. However, it is much easier to use a
well-designed library than it is to understand the details of its implementation. Therefore, the stan-
dard library can be used to provide realistic and interesting examples well before a reader can be
assumed to understand its inner workings. The standard library itself is also a fertile source of pro-
gramming examples and design techniques.
__________________
† ISO/IEC 14882, Standard for the C++ Programming Language.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



vi Preface

This book presents every major C++ language feature and the standard library. It is organized
around language and library facilities. However, features are presented in the context of their use.
That is, the focus is on the language as the tool for design and programming rather than on the lan-
guage in itself. This book demonstrates key techniques that make C++ effective and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are
taken from the domain of systems software. A companion,The Annotated C++ Language Stan-
dard, presents the complete language definition together with annotations to make it more compre-
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C++
support key programming techniques. The aim is to take the reader far beyond the point where he
or she gets code running primarily by copying examples and emulating programming styles from
other languages. Only a good understanding of the ideas behind the language facilities leads to
mastery. Supplemented by implementation documentation, the information provided is sufficient
for completing significant real-world projects. The hope is that this book will help the reader gain
new insights and become a better programmer and designer.

Acknowledgments
In addition to the people mentioned in the acknowledgement sections of the first and second edi-
tions, I would like to thank Matt Austern, Hans Boehm, Don Caldwell, Lawrence Crowl, Alan
Feuer, Andrew Forrest, David Gay, Tim Griffin, Peter Juhl, Brian Kernighan, Andrew Koenig,
Mike Mowbray, Rob Murray, Lee Nackman, Joseph Newcomer, Alex Stepanov, David Vandevo-
orde, Peter Weinberger, and Chris Van Wyk for commenting on draft chapters of this third edition.
Without their help and suggestions, this book would have been harder to understand, contained
more errors, been slightly less complete, and probably been a little bit shorter.

I would also like to thank the volunteers on the C++ standards committees who did an immense
amount of constructive work to make C++ what it is today. It is slightly unfair to single out indi-
viduals, but it would be even more unfair not to mention anyone, so I’d like to especially mention
Mike Ball, Dag Br

. .
uck, Sean Corfield, Ted Goldstein, Kim Knuttila, Andrew Koenig, José e Lajoie,

Dmitry Lenkov, Nathan Myers, Martin O’Riordan, Tom Plum, Jonathan Shopiro, John Spicer,
Jerry Schwarz, Alex Stepanov, and Mike Vilot, as people who each directly cooperated with me
over some part of C++ and its standard library.

Murray Hill, New Jersey Bjarne Stroustrup

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.


	The C++ Programming Language (Special 3rd Edition)
	Title
	Copyright
	Contents
	Preface
	Preface to the Second Edition
	Preface to the First Edition
	Part 0: Introduction
	Ch1 Notes to the Reader
	1.1 The Structure of This Book
	1.2 Learning C++
	1.3 The Design of C++
	1.4 Historical Note
	1.5 Use of C++
	1.6 C and C++
	1.7 Thinking about Programming in C++
	1.8 Advice

	Ch2 A Tour of C++
	2.1 What is C++?
	2.2 Programming Paradigms
	2.3 Procedural Programming
	2.4 Modular Programming
	2.5 Data Abstraction
	2.6 Object Oriented Programming
	2.7 Generic Programming
	2.8 Postscript
	2.9 Advice

	Ch3 A Tour of the Standard Library
	3.1 Introduction
	3.2 Hello, world!
	3.3 The Standard Library Namespace
	3.4 Output
	3.5 Strings
	3.6 Input
	3.7 Containers
	3.8 Algorithms
	3.9 Math
	3.10 Standard Library Facilities
	3.11 Advice


	Part I: Basic Facilities
	Ch4 Types and Declarations
	4.1 Types
	4.2 Booleans
	4.3 Character Types
	4.4 Integer Types
	4.5 Floating Point Types
	4.6 Sizes
	4.7 Void
	4.8 Enumerations
	4.9 Declarations
	4.10 Advice
	4.11 Exercises

	Ch5 Pointers, Arrays, and Structures
	5.1 Pointers
	5.2 Arrays
	5.3 Pointers into Arrays
	5.4 Constants
	5.5 References
	5.6 Pointer to Void
	5.7 Structures
	5.8 Advice

	Ch6 Expressions and Statements
	6.1 A Desk Calculator
	6.2 Operator Summary
	6.3 Statement Summary
	6.4 Comments and Indentation
	6.5 Advice

	Ch7 Functions
	7.1 Function Declarations
	7.2 Argument Passing
	7.3 Value Return
	7.4 Overloaded Function Names
	7.5 Default Arguments
	7.6 Unspecified Number of Arguments
	7.7 Pointer to Function
	7.8 Macros
	7.9 Advice
	7.10 Exercises

	Ch8 Namespaces and Exceptions
	8.1 Modularization and Interfaces
	8.2 Namespaces
	8.3 Exceptions
	8.4 Advice
	8.5 Exercises

	Ch9 Source Files and Programs
	9.1 Separate Compilation
	9.2 Linkage
	9.3 Using Header Files
	9.4 Programs
	9.5 Advice
	9.6 Exercises


	Part II: Abstraction Mechanisms
	Ch10 Classes
	10.1 Introduction
	10.2 Classes
	10.3 Efficient User Defined Types
	10.4 Objects
	10.5 Advice

	Ch11 Operator Overloading
	11.1 Introduction
	11.2 Operator Functions
	11.3 A Complex Number Type
	11.4 Conversion Operators
	11.5 Friends
	11.6 Large Objects
	11.7 Essential Operators
	11.8 Subscripting
	11.9 Function Call
	11.10 Dereferencing
	11.11 Increment and Decrement
	11.12 A String Class
	11.13 Advice
	11.14 Exercises

	Ch12 Derived Classes
	12.1 Introduction
	12.2 Derived Classes
	12.3 Abstract Classes
	12.4 Design of Class Hierarchies
	12.5 Class Hierarchies and Abstract Classes
	12.6 Advice
	12.7 Exercises

	Ch13 Templates
	13.1 Introduction
	13.2 A Simple String Template
	13.3 Function Templates
	13.4 Using Template Arguments to Specify Policy
	13.5 Specialization
	13.6 Derivation and Templates
	13.7 Source Code Organization
	13.8 Advice
	13.9 Exercises

	Ch14 Exception Handling
	14.1 Error Handling
	14.2 Grouping of Exceptions
	14.3 Catching Exceptions
	14.4 Resource Management
	14.5 Exceptions That Are Not Errors
	14.6 Exception Specifications
	14.7 Uncaught Exceptions
	14.8 Exceptions and Efficiency
	14.9 Error Handling Alternatives
	14.10 Standard Exceptions
	14.11 Advice
	14.12 Exercises

	Ch15 Class Hierarchies
	15.1 Introduction and Overview
	15.2 Multiple Inheritance
	15.3 Access Control
	15.4 Run Time Type Information
	15.5 Pointers to Members
	15.6 Free Store
	15.7 Advice
	15.8 Exercises


	Part III: The Standard Library
	Ch16 Library Organization and Containers
	16.1 Standard Library Design
	16.2 Container Design
	16.3 Vector
	16.4 Advice
	16.5 Exercises

	Ch17 Standard Containers
	17.1 Standard Containers
	17.2 Sequences
	17.3 Sequence Adapters
	17.4 Associative Containers
	17.5 Almost Containers
	17.6 Defining a New Container
	17.7 Advice
	17.8 Exercises

	Ch18 Algorithms and Function Objects
	18.1 Introduction
	18.2 Overview of Standard Library Algorithms
	18.3 Sequences and Containers
	18.4 Function Objects
	18.5 Nonmodifying Sequence Algorithms
	18.6 Modifying Sequence Algorithms
	18.7 Sorted Sequences
	18.8 Heaps
	18.9 Min and Max
	18.10 Permutations
	18.11 C Style Algorithms
	18.12 Advice
	18.13 Exercises

	Ch19 Iterators and Allocators
	19.1 Introduction
	19.2 Iterators and Sequences
	19.3 Checked Iterators
	19.4 Allocators
	19.5 Advice
	19.6 Exercises

	Ch20 Strings
	20.1 Introduction
	20.2 Characters
	20.3 Basic_string
	20.4 The C Standard Library
	20.5 Advice
	20.6 Exercises

	Ch21 Streams
	21.1 Introduction
	21.2 Output
	21.3 Input
	21.4 Formatting
	21.5 File Streams and String Streams
	21.6 Buffering
	21.7 Locale
	21.8 C Input/Output
	21.9 Advice
	21.10 Exercises

	Ch22 Numerics
	22.1 Introduction
	22.2 Numeric Limits
	22.3 Standard Mathematical Functions
	22.4 Vector Arithmetic
	22.5 Complex Arithmetic
	22.6 Generalized Numeric Algorithms
	22.7 Random Numbers
	22.8 Advice
	22.9 Exercises


	Part IV: Design Using C++
	Ch23 Development and Design
	23.1 Overview
	23.2 Introduction
	23.3 Aims and Means
	23.4 The Development Process
	23.5 Management
	23.6 Annotated Bibliography
	23.7 Advice

	Ch24 Design and Programming
	24.1 Overview
	24.2 Design and Programming Language
	24.3 Classes
	24.4 Components
	24.5 Advice

	Ch25 Roles of Classes
	25.1 Kinds of Classes
	25.2 Concrete Types
	25.3 Abstract Types
	25.4 Node Classes
	25.5 Actions
	25.6 Interface Classes
	25.7 Handle Classes
	25.8 Application Frameworks
	25.9 Advice
	25.10 Exercises


	Appendices and Index
	AppA Grammar
	A.1 Introduction
	A.2 Keywords
	A.3 Lexical Conventions
	A.4 Programs
	A.5 Expressions
	A.6 Statements
	A.7 Declarations
	A.8 Classes
	A.9 Templates
	A.10 Exception Handling
	A.11 Preprocessing Directives

	AppB Compatibility
	B.1 Introduction
	B.2 C/C++ Compatibility
	B.3 Coping with Older C++ Implementations

	AppC Technicalities
	C.1 Introduction and Overview
	C.2 The Standard
	C.3 Character Sets
	C.4 Types of Integer Literals
	C.5 Constant Expressions
	C.6 Implicit Type Conversion
	C.7 Multidimensional Arrays
	C.8 Saving Space
	C.9 Memory Management
	C.10 Namespaces
	C.11 Access Control
	C.12 Pointers to Data Members
	C.13 Templates
	C.14 Advice

	AppD Locales
	D.1 Handling Cultural Differences
	D.1.1 Programming Cultural Differences

	D.2 The locale Class
	D.2.1 Named Locales
	D.2.1.1 Constructing New Locales

	D.2.2 Copying and Comparing Locales
	D.2.3 The global() and the classic() Locales
	D.2.4 Comparing Strings

	D.3 Facets
	D.3.1 Accessing Facets in a Locale
	D.3.2 A Simple User-Defined Facet
	D.3.3 Uses of Locales and Facets

	D.4 Standard Facets
	D.4.1 String Comparison
	D.4.1.1 Named Collate

	D.4.2 Numeric Input and Output
	D.4.2.1 Numeric Punctuation
	D.4.2.2 Numeric Output
	D.4.2.3 Numeric Input

	D.4.3 Input and Output of Monetary Values
	D.4.3.1 Money Punctuation
	D.4.3.2 Money Output
	D.4.3.3 Money Input

	D.4.4 Date and Time Input and Output
	D.4.4.1 Clocks and Timers
	D.4.4.2 A Date Class
	D.4.4.3 Date and Time Output
	D.4.4.4 Date and Time Input
	D.4.4.5 A More Flexible Date Class
	D.4.4.6 Specifying a Date Format
	D.4.4.7 A Date Input Facet

	D.4.5 Character Classification
	D.4.5.1 Convenience Interfaces

	D.4.6 Character Code Conversion
	D.4.7 Messages
	D.4.7.1 Using Messages from Other Facets


	D.5 Advice

	AppE Standard-Library Exception Safety
	E.1 Introduction
	E.2 Exception Safety
	E.3 Exception-Safe Implementation Techniques
	E.3.1 A Simple Vector
	E.3.2 Representing Memory Explicitly
	E.3.3 Assignment
	E.3.4 push_ back()
	E.3.5 Constructors and Invariants
	E.3.5.1 Using init() Functions
	E.3.5.2 Relying on a Default Valid State
	E.3.5.3 Delaying resource acquisition


	E.4 Standard Container Guarantees
	E.4.1 Insertion and Removal of Elements
	E.4.2 Guarantees and Tradeoffs
	E.4.3 Swap
	E.4.4 Initialization and Iterators
	E.4.5 References to Elements
	E.4.6 Predicates

	E.5 The Rest of the Standard Library
	E.5.1 Strings
	E.5.2 Streams
	E.5.3 Algorithms
	E.5.4 Valarray and Complex
	E.5.5 The C Standard Library

	E.6 Implications for Library Users
	E.7 Advice
	E.8 Exercises

	Index





