Java and SOAP

Preface

The Simple Object Access Protocol, or SOAP, is the latest in a long line of technologies for
distributed computing. It differs from other distributed computing technologies in that it is
based on XML, and also that thus far it has not attempted to redefine the computing world.
Instead, the SOAP specification describes important aspects of data content and structure as
they relate to familiar programming models like remote procedure calls (RPCs) and message
passing systems.

These specifications live squarely in the world of XML. SOAP is not bound to a specific
programming language, computing platform, or software development environment. There
are SOAP implementations that provide bindings for a variety of programming languages like
CH#, Perl, and Java™., Without these implementations SOAP remains in the abstract: a great
concept without manifestation. It is the binding to software development languages that
makes SOAP come alive, and that is what this book is about. Java is a natural for XML
processing, making it perfect for building SOAP services and client applications. If building
SOAP-aware software in Java is what you want to do, this book is just what you need to get
started.

Intended Audience

This book is for everyone interested in how to access SOAP-based web services in Java, as
well as how to build SOAP-based services in Java. It's written for programmers, students,
and professionals who are already familiar with Java, so it doesn't spend any time covering
the basic concepts or syntax of the language. If you aren't familiar with Java, you may want to
keep a copy of a Java language book, like O'Reilly's Learning Java or Java in a Nutshell,
close by.

A Moment in Time

The SOAP specification is still evolving. This book describes SOAP according to Version 1.1
of the spec. Although the concepts and techniques covered should continue to be relevant in
future SOAP releases, there will certainly be important additions to SOAP as new versions of
the spec are finalized. The Java implementations we'll be looking at will continue to evolve as
well. Obviously, the descriptions and examples in this book will become dated or even
obsolete over time — and that time will probably be sooner rather than later, given the speed
at which web services are evolving. In fact, the handwriting is already on the wall: Apache
SOAP Version 2, on which many of the examples are based, is destined to be replaced by
Apache SOAP 3 (also known as Axis), which is currently available in an early release and is
discussed briefly in Chapter 9. Axis, in turn, is committed to supporting the JAX RPC and
JAXM API specifications, which are themselves still under development. An early access
release of the reference implementation for these specifications is available from Sun
Microsystems (and discussed in Chapter 11); this release is more recent than the most recent
release of Axis. And it would be foolish to think that the JAX Pack specifications will mark
the end of the evolutionary process. However, when the inevitable happens, you'll be armed
with the knowledge and understanding necessary to keep pace with the changes.



Java and SOAP

How This Book Is Organized

The chapters in this book are organized so that each one builds upon the information
presented in previous chapters, so it's best if you read the chapters in order.

Chapter 1

This chapter provides an overview of SOAP, including related technologies, problem
spaces, and comparisons to other solutions. It also introduces Apache SOAP and
GLUE, the SOAP implementations that will be used throughout the book.

Chapter 2

This chapter describes the SOAP Envelope, a structured XML document that carries
the payload of a SOAP transaction between client and server. It covers all aspects of a
SOAP Envelope, including Headers, SOAP Body elements, and Faults. Some details
of the SOAP HTTP binding are also included.

Chapter 3

This chapter covers the data encoding of a SOAP transaction, including rules for
encoding and serializing data elements. It starts out with a description of namespaces,
and then delves into the serialization of both simple and complex data types.

Chapter 4

This chapter goes deep into SOAP-based remote procedure call (RPC) style services.
Extensive coverage of service methods and parameters is provided, along with the
details of service deployment and activation mechanisms.

Chapter 5

This chapter looks at the creation of services with complex method parameters and
return values such as arrays and Java beans. It covers the mechanisms available for
mapping these types to Java classes on both client and server systems.

Chapter 6

This chapter covers the use of nonstandard custom data types, picking up where
Chapter 5 left off. It looks at some of the tools and APIs used to pass instances of
custom data types as parameters and return values. It also details the techniques of
writing Java classes for serializing and deserializing custom types.

Chapter 7

This chapter describes SOAP Faults, along with their relationship to Java exceptions.
It looks at the default mechanisms provided, as well as techniques for generating and
extending the contents of Faults.



Java and SOAP

Chapter 8

This chapter starts out by describing the use of SOAP message-style services, an
alternative to the RPC model. It also looks at passing literal XML inside of a SOAP
Envelope, and finishes up with a look at SOAP Attachments.

Chapter 9

This chapter looks at getting SOAP clients and servers, developed using different
technologies, to work properly together. An introduction to the Web Services
Description Language (WSDL) is provided. Examples are developed that cover clients
and services built using Apache SOAP and GLUE, a sneak peek at Apache Axis, and
Java clients accessing Microsoft .NET services.

Chapter 10

This chapter looks at the use of SOAP Headers, which provide a means to pass data
between clients and services that lie outside the scope of the SOAP Body. It covers the
development of an intermediary service that acts as a message router to another
service. Some Java classes are developed for extending the Apache SOAP framework
in order to work with SOAP Headers.

Chapter 11

This chapter examines the emerging standard: the Java API for XML-based RPC
(JAX-RPC). It's a look at an early release of Sun's reference implementation. This
chapter covers the development of both a service and a client, and also looks at using
the tools to develop code for accessing services described by WSDL. A final
commentary on JAXM is also included.

Conventions Used in This Book
Constant Width is used for:

e Anything that might appear in a Java program, including keywords, operators, data
types, constants, method names, variable names, class names, interface names, and
Java package names.

o Command lines and options that should be typed verbatim on the screen.

e Namespaces.

Italic 1s used for:

e Pathnames, filenames, and Internet addresses, such as domain names and URLs.
Italics is also used for executable files.

Making fine distinctions in a book like this is generally a losing battle. But I have tried to
distinguish between namespaces (constant width) and URLs (italic), even though they look
identical. Likewise, I've tried to distinguish between Java methods (constant width and ending
in a pair of parentheses) and the methods exported by the SOAP service (constant width, no
parentheses).



Java and SOAP

. This icon signifies a note relating to the nearby text.

- This icon signifies a warning relating to the nearby text.

How to Contact Us

I've certainly tried to be accurate in my descriptions and examples, but errors and omissions
will inevitably exist. If you find mistakes, or you think I've left out important details, or you'd
like to contact me for some other reason related to this work, you can contact me directly at:
rob@mindstrm.com

Alternately, address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/javasoap
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com/
Retrieving Examples Online
The code for the examples throughout this book is available online at:

http://www.mindstrm.com/javasoap



Java and SOAP

Acknowledgments

My good friend Rinaldo DiGiorgio continues, to this day, to keep me interested in Java and its
related technologies. I don't think anyone has been a greater influence on my Java work than
he has. Thanks, Rinaldo, for keeping me on the right path.

Many thanks go to David Askey and Anne Thomas Manes for reviewing the book and
providing valuable feedback. They managed to find errors and offer advice that makes this a
better book than it would have been without their help. Thanks to Lorraine Pecorelli for
reading every chapter and making sure the words made sense. My deepest appreciation goes
to Mike Loukides, the editor of this book. There were many obstacles to getting this project
finished, and Mike's commitment and loyalty was key to turning the effort into a book. A
thank you also is due to the O'Reilly design and production crew.

And finally, thanks to my family, Jessica and Carolyn, for their support. I'm not going to
thank my friends this time — they were no help at all!



	Cover
	Table of Contents
	Dedication
	Preface
	Intended Audience
	A Moment in Time
	How This Book Is Organized
	Conventions Used in This Book
	How to Contact Us
	Retrieving Examples Online
	Acknowledgments

	1. Introduction
	1.1 RPC and Message-Oriented Distributed Systems
	1.2 Self-Describing Data
	1.3 XML
	1.4 API Specs Versus Wire-Level Specs
	1.5 Overview of SOAP
	1.6 SOAP Implementations
	1.7 The Approach
	1.8 Getting Started

	2. The SOAP Message
	2.1 The HTTP Binding
	2.2 HTTP Request
	2.3 HTTP Response
	2.4 The SOAP Envelope
	2.5 The Envelope Element
	2.6 The Header Element
	2.7 The actor Attribute
	2.8 The mustUnderstand Attribute
	2.9 The encodingStyle Attribute
	2.10 Envelope Versioning
	2.11 The Body Element
	2.12 SOAP Faults

	3. SOAP Data Encoding
	3.1 Schemas and Namespaces
	3.2 Serialization Rules
	3.3 Indicating Type
	3.4 Default Values
	3.5 The SOAP Root Attribute

	4. RPC-Style Services
	4.1 SOAP RPC Elements
	4.2 A Simple Service
	4.3 Deploying the Service
	4.4 Writing Service Clients
	4.5 Deploying with Request-Level Scope
	4.6 Deploying with Session-Level Scope
	4.7 Passing Parameters

	5. Working with Complex Data Types
	5.1 Passing Arrays as Parameters
	5.2 Returning Arrays
	5.3 Passing Custom Types as Parameters
	5.4 Returning Custom Types

	6. Custom Serialization
	6.1 Custom Type Encoding

	7. Faults and Exceptions
	7.1 Throwing Server-Side Exceptions in Apache SOAP
	7.2 Creating a Fault Listener in Apache SOAP
	7.3 Throwing and Catching Exceptions in GLUE

	8. Alternative Techniques
	8.1 SOAP Messaging
	8.2 Literal Encoding

	9. SOAP Interoperability and WSDL
	9.1 Web Services Definition Language
	9.2 Calling a GLUE Service from an ApacheSOAP Client
	9.3 A Proxy Service Using Apache SOAP
	9.4 Calling an Apache SOAP Service from a GLUE Client
	9.5 Accessing .NET Services
	9.6 Writing an Apache Axis Client

	10. SOAP Headers
	10.1 Apache SOAP Providers and Routers
	10.2 Replacing the Provider and Router Classes
	10.3 An Apache SOAP Service That Handles SOAP Headers

	11. JAX-RPC and JAXM
	11.1 JAX-RPC
	11.2 Working Without Ant
	11.3 Creating a JAX-RPC Service
	11.4 Creating a JAX-RPC Client
	11.5 Generating Stubs from WSDL
	11.6 Dynamic Invocation Interface
	11.7 JAXM, in Less Than a Nutshell
	11.8 What Next?

	Colophon



