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Understand how
rogue applets can
transmit bad code:

Mobile code applications,
in the form of Java
applets, JavaScript, and
ActiveX controls, are
powerful tools for
distributing information.
They are also powerful
tools for transmitting
malicious code. Rogue
applets do not replicate
themselves or simply
corrupt data as viruses do,
but instead they are most
often specific attacks
designed to steal data or
disable systems.
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Thinking Creatively
When Coding

■ Be aware of outside
influences on your
code, expect the
unexpected!

■ Look for ways to
minimize your code;
keep the functionality
in as small a core as
possible.

■ Review, review, review!
Don’t try to isolate your
efforts or conceal
mistakes. 
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Tools & Traps…Beware
of User Input

One of the most common
methods of exploiting CGI
scripts and programs is
used when scripts allow
user input, but the data
that users are submitting
is not checked. Controlling
what information users
are able to submit will
reduce your chances of
being hacked through a
CGI script dramatically.
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Answers All Your
Questions About
Hacking Techniques

Q: What should I do if I
stumble across a back
door in my code base?

A: First and most
importantly, determine
that it is a genuine back
door. Segments of code
often appear to have
no authentication
aspect and can do
some rather powerful
things, but nonetheless
had proper
authentication
performed prior to their
being called. If your
best research still
indicates that it is a
back door, contact an
associate in your
security department
who understands the
language in which
you're coding and
request a review of the
code. If that person
determines it is a back
door, it should be
investigated to
determine whether the
code was introduced
simply due to poor
planning or actual
malice.
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How to Efficiently Trace
through a Program

Tracing a program’s
execution from start to
finish is too time-
intensive.

You can save time by
instead going directly
to problem areas.

This approach allows
you to skip benign
application
processing/calculation
logic.
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Complete coverage of
the Java Security
Model:

■ Class loaders

■ Byte-code verification

■ Security managers

■ Digital signatures

■ Authentication using
certificates

■ JAR signing

■ Encryption

Damage & Defense:
Debugging XSL

The interaction of a style
sheet with an XML
document can be a
complicated process, and
unfortunately, style sheet
errors can often be cryptic.
Microsoft has an HTML-
based XSL debugger you
can use to walk through
the execution of your XSL.
You can also view the
source code to make your
own improvements. You
can find the XSL Debugger
at http://msdn.microsoft
.com/downloads/samples/
internet/xml/sxl_debugger/
default.asp.
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Write Secure
ColdFusion Code:

When writing a ColdFusion
application, you must look
out for a number of tags
that involve the movement
of data in ways that can be
attacked. In most cases,
validating the data sent to
a page will prevent them
from being misused. In
others, not allowing
attributes to be set
dynamically is the answer.
For each tag we examine,
another solution may be to
just turn the tag off (an
option controlled by the
administration panel).
Other tags can not be
turned off and must be
coded properly.

Select Cryptography
Token, Key Type, and
Key Length
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Set up a checklist of
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detected through
standard testing
methods for working
in a Java
environment:

■ Excessive copying of
strings—unnecessary
copies of immutable
objects

■ Failure to clone
returned objects

■ Unnecessary cloning

■ Copying arrays by hand

■ Copying the wrong
thing or making only a
partial copy

■ Testing new for null

■ Using == instead of
.equals

■ The confusion of
nonatomic and atomic
operations

■ The addition of
unnecessary
catchblocks

■ Failure to implement
equals, clone or
hashcode
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