
Contents

xiii

Foreword xxv

Chapter 1 Hacking Methodology 1
Introduction 2

Understanding the Terms 3
A Brief History of Hacking 4

Phone System Hacking 5
Computer Hacking 6

What Motivates a Hacker? 9
Ethical Hacking versus Malicious Hacking 10
Working with Security Professionals 11

Associated Risks with Hiring a Security
Professional 12

Understanding Current Attack Types 13
DoS/DDoS 13
Virus Hacking 16

Trojan Horses 18
Worms 21
Rogue Applets 22

Stealing 23
Credit Card Theft 24
Theft of Identity 26
Information Piracy 27

Recognizing Web Application Security Threats 28
Hidden Manipulation 29
Parameter Tampering 29
Cross-Site Scripting 29
Buffer Overflow 30
Cookie Poisoning 31

Understand how
rogue applets can
transmit bad code:

Mobile code applications,
in the form of Java
applets, JavaScript, and
ActiveX controls, are
powerful tools for
distributing information.
They are also powerful
tools for transmitting
malicious code. Rogue
applets do not replicate
themselves or simply
corrupt data as viruses do,
but instead they are most
often specific attacks
designed to steal data or
disable systems.

137_hackapps_TOC 6/19/01 3:25 PM Page xiii

xiv Contents

Preventing Break-Ins by Thinking Like a Hacker 31
Summary 35
Solutions Fast Track 36
Frequently Asked Questions 40

Chapter 2 How to Avoid Becoming
a “Code Grinder” 43

Introduction 44
What Is a Code Grinder? 45

Following the Rules 49
Thinking Creatively When Coding 50

Allowing for Thought 53
Modular Programming Done Correctly 53

Security from the Perspective of a Code Grinder 56
Coding in a Vacuum 58

Building Functional and Secure Web Applications 59
But My Code Is Functional! 66

There Is More to an Application than
Functionality 68

Let’s Make It Secure and Functional 71
Summary 76
Solutions Fast Track 77
Frequently Asked Questions 78

Chapter 3 Understanding the Risks
Associated with Mobile Code 81

Introduction 82
Recognizing the Impact of Mobile Code Attacks 83

Browser Attacks 83
Mail Client Attacks 84
Malicious Scripts or Macros 85

Identifying Common Forms of Mobile Code 86
Macro Languages:Visual Basic for
Applications (VBA) 87

Security Problems with VBA 89
Protecting against VBA Viruses 92

JavaScript 93
JavaScript Security Overview 94

Thinking Creatively
When Coding

■ Be aware of outside
influences on your
code, expect the
unexpected!

■ Look for ways to
minimize your code;
keep the functionality
in as small a core as
possible.

■ Review, review, review!
Don’t try to isolate your
efforts or conceal
mistakes.

137_hackapps_TOC 6/19/01 3:25 PM Page xiv

Contents xv

Security Problems 95
Exploiting Plug-In Commands 96
Web-Based E-Mail Attacks 96
Social Engineering 97
Lowering JavaScript Security Risks 97

VBScript 98
VBScript Security Overview 98
VBScript Security Problems 99
VBScript Security Precautions 101

Java Applets 101
Granting Additional Access to Applets 102
Security Problems with Java 103
Java Security Precautions 104

ActiveX Controls 105
ActiveX Security Overview 105
Security Problems with ActiveX 107

E-Mail Attachments and Downloaded
Executables 110

Back Orifice 2000 Trojan 111
Protecting Your System from Mobile Code
Attacks 115

Security Applications 115
ActiveX Manager 115
Back Orifice Detectors 115
Firewall Software 119

Web-Based Tools 119
Identifying Bad ActiveX Controls 119
Client Security Updates 120

Summary 121
Solutions Fast Track 122
Frequently Asked Questions 123

Chapter 4 Vulnerable CGI Scripts 125
Introduction 126
What Is a CGI Script, and What Does It Do? 127

Typical Uses of CGI Scripts 129
When Should You Use CGI? 135

Understand how
mobile code works for
Java applets and
ActiveX controls:

Mobile Code Residing on a
Web Server

Sending Computer

HTML E-Mail Containing
URL Reference to Code

(Java Applet or ActiveX)

HTML E-Mail Retrieves
Code When Opened

Server

Applet or
ActiveX

Your Computer

137_hackapps_TOC 6/19/01 3:25 PM Page xv

xvi Contents

CGI Script Hosting Issues 136
Break-Ins Resulting from Weak CGI Scripts 137

How to Write “Tighter” CGI Scripts 139
Searchable Index Commands 143
CGI Wrappers 144

Whisker 145
Languages for Writing CGI Scripts 149

Unix Shell 150
Perl 151
C/C++ 151
Visual Basic 152

Advantages of Using CGI Scripts 153
Rules for Writing Secure CGI Scripts 153

Storing CGI Scripts 157
Summary 161
Solutions Fast Track 161
Frequently Asked Questions 165

Chapter 5 Hacking Techniques and Tools 167
Introduction 168
A Hacker’s Goals 169

Minimize the Warning Signs 170
Maximize the Access 172
Damage, Damage, Damage 175
Turning the Tables 177

The Five Phases of Hacking 178
Creating an Attack Map 179
Building an Execution Plan 182
Establishing a Point of Entry 183
Continued and Further Access 184
The Attack 186

Social Engineering 188
Sensitive Information 188

E-Mail or Messaging Services 189
Telephones and Documents 191
Credentials 193

The Intentional “Back Door”Attack 195

Tools & Traps…Beware
of User Input

One of the most common
methods of exploiting CGI
scripts and programs is
used when scripts allow
user input, but the data
that users are submitting
is not checked. Controlling
what information users
are able to submit will
reduce your chances of
being hacked through a
CGI script dramatically.

137_hackapps_TOC 6/19/01 3:25 PM Page xvi

Contents xvii

Hard-Coding a Back Door Password 195
Exploiting Inherent Weaknesses in Code or

Programming Environments 198
The Tools of the Trade 199

Hex Editors 199
Debuggers 201
Disassemblers 202

Windows-Based Tools 202
Quick View 204
DOS-Based Tools 204

Summary 206
Solutions Fast Track 207
Frequently Asked Questions 211

Chapter 6 Code Auditing and
Reverse Engineering 215

Introduction 216
How to Efficiently Trace through a Program 216
Auditing and Reviewing Selected Programming

Languages 220
Reviewing Java 220
Reviewing Java Server Pages 221
Reviewing Active Server Pages 221
Reviewing Server Side Includes 222
Reviewing Python 222
Reviewing Tool Command Language 222
Reviewing Practical Extraction and

Reporting Language 222
Reviewing PHP: Hypertext Preprocessor 223
Reviewing C/C++ 223
Reviewing ColdFusion 224

Looking for Vulnerabilities 224
Getting the Data from the User 225
Looking for Buffer Overflows 226

The str* Family of Functions 227
The strn* Family of Functions 228
The *scanf Family of Functions 228

Answers All Your
Questions About
Hacking Techniques

Q: What should I do if I
stumble across a back
door in my code base?

A: First and most
importantly, determine
that it is a genuine back
door. Segments of code
often appear to have
no authentication
aspect and can do
some rather powerful
things, but nonetheless
had proper
authentication
performed prior to their
being called. If your
best research still
indicates that it is a
back door, contact an
associate in your
security department
who understands the
language in which
you're coding and
request a review of the
code. If that person
determines it is a back
door, it should be
investigated to
determine whether the
code was introduced
simply due to poor
planning or actual
malice.

137_hackapps_TOC 6/19/01 3:25 PM Page xvii

xviii Contents

Other Functions Vulnerable to Buffer
Overflows 229

Checking the Output Given to the User 230
Format String Vulnerabilities 230
Cross-Site Scripting 232
Information Disclosure 234

Checking for File System Access/Interaction 235
Checking External Program and Code

Execution 238
Calling External Programs 239
Dynamic Code Execution 240
External Objects/Libraries 241

Checking Structured Query Language
(SQL)/Database Queries 242

Checking Networking and
Communication Streams 245

Pulling It All Together 247
Summary 248
Solutions Fast Track 248
Frequently Asked Questions 250

Chapter 7 Securing Your Java Code 253
Introduction 254
Overview of the Java Security Architecture 255

The Java Security Model 257
The Sandbox 259

Security and Java Applets 260
How Java Handles Security 264

Class Loaders 265
The Applet Class Loader 266
Adding Security to a Custom

Class Loader 266
Byte-Code Verifier 269
Java Protected Domains 275

Java Security Manager 276
Policy Files 277
The SecurityManager Class 284

How to Efficiently Trace
through a Program

Tracing a program’s
execution from start to
finish is too time-
intensive.

You can save time by
instead going directly
to problem areas.

This approach allows
you to skip benign
application
processing/calculation
logic.

137_hackapps_TOC 6/19/01 3:25 PM Page xviii

Contents xix

Potential Weaknesses in Java 285
DoS Attack/Degradation of Service Attacks 285
Third-Party Trojan Horse Attacks 289

Coding Functional but Secure Java Applets 290
Message Digests 291
Digital Signatures 295

Generating a Key Pair 298
Obtaining and Verifying a Signature 301

Authentication 303
X.509 Certificate Format 305
Obtaining Digital Certificates 305

Protecting Security with JAR Signing 311
Encryption 315

Cryptix Installation Instructions 319
Sun Microsystems Recommendations

for Java Security 322
Privileged Code Guidelines 323
Java Code Guidelines 324
C Code Guidelines 325

Summary 326
Solutions Fast Track 327
Frequently Asked Questions 329

Chapter 8 Securing XML 331
Introduction 332
Defining XML 332

Logical Structure 334
Elements 335

Attributes 336
Well-Formed Documents 337
Valid Document 337

XML and XSL/DTD Documents 339
XSL Use of Templates 339
XSL Use of Patterns 340
DTD 344

Schemas 345
Creating Web Applications Using XML 347

Complete coverage of
the Java Security
Model:

■ Class loaders

■ Byte-code verification

■ Security managers

■ Digital signatures

■ Authentication using
certificates

■ JAR signing

■ Encryption

Damage & Defense:
Debugging XSL

The interaction of a style
sheet with an XML
document can be a
complicated process, and
unfortunately, style sheet
errors can often be cryptic.
Microsoft has an HTML-
based XSL debugger you
can use to walk through
the execution of your XSL.
You can also view the
source code to make your
own improvements. You
can find the XSL Debugger
at http://msdn.microsoft
.com/downloads/samples/
internet/xml/sxl_debugger/
default.asp.

137_hackapps_TOC 6/19/01 3:25 PM Page xix

xx Contents

The Risks Associated with Using XML 352
Confidentiality Concerns 353

Securing XML 354
XML Encryption 355
XML Digital Signatures 362

Summary 366
Solutions Fast Track 367
Frequently Asked Questions 369

Chapter 9 Building Safe ActiveX
Internet Controls 371

Introduction 372
Dangers Associated with Using ActiveX 373

Avoiding Common ActiveX Vulnerabilities 375
Lessening the Impact of ActiveX
Vulnerabilities 378

Protection at the Network Level 379
Protection at the Client Level 379

Methodology for Writing Safe ActiveX Controls 382
Object Safety Settings 383

Securing ActiveX Controls 385
Control Signing 385

Using Microsoft Authenticode 387
Control Marking 389

Using Safety Settings 389
Using IObjectSafety 390
Marking the Control in the Windows

Registry 395
Summary 397
Solutions Fast Track 398
Frequently Asked Questions 400

Chapter 10 Securing ColdFusion 403
Introduction 404
How Does ColdFusion Work? 404

Utilizing the Benefit of Rapid Development 406

Use ActiveX and
understand the
Authenticode Security
Warning

137_hackapps_TOC 6/19/01 3:25 PM Page xx

Contents xxi

Understanding ColdFusion Markup
Language 408

Scalable Deployment 410
Open Integration 410

Preserving ColdFusion Security 411
Secure Development 414

CFINCLUDE 414
Queries 419
Uploaded Files 425
Denial of Service 425
Turning Off Tags 426

Secure Deployment 427
ColdFusion Application Processing 428

Checking for Existence of Data 428
Checking Data Types 430
Data Evaluation 433

Risks Associated with Using ColdFusion 435
Using Error Handling Programs 438

Monitor.cfm Example 441
Using Per-Session Tracking 444
Summary 447
Solutions Fast Track 448
Frequently Asked Questions 450

Chapter 11 Developing Security-Enabled
Applications 451

Introduction 452
The Benefits of Using Security-Enabled
Applications 453

Types of Security Used in Applications 454
Digital Signatures 455
Pretty Good Privacy 456
Secure Multipurpose Internet Mail Extension 459
Secure Sockets Layer 460

Server Authentication 462
Client Authentication 462

Digital Certificates 466

Write Secure
ColdFusion Code:

When writing a ColdFusion
application, you must look
out for a number of tags
that involve the movement
of data in ways that can be
attacked. In most cases,
validating the data sent to
a page will prevent them
from being misused. In
others, not allowing
attributes to be set
dynamically is the answer.
For each tag we examine,
another solution may be to
just turn the tag off (an
option controlled by the
administration panel).
Other tags can not be
turned off and must be
coded properly.

Select Cryptography
Token, Key Type, and
Key Length

137_hackapps_TOC 6/19/01 3:25 PM Page xxi

xxii Contents

Reviewing the Basics of PKI 468
Certificate Services 471

iPlanet by Sun/Netscape 472
Using PKI to Secure Web Applications 472
Implementing PKI in Your Web Infrastructure 473

Microsoft Certificate Services 474
Netscape Certificate Server 478

Installation of Netscape Certificate Server 478
Administering Netscape CMS 483

PKI for Apache Server 486
PKI and Secure Software Toolkits 487

Testing Your Security Implementation 488
Summary 492
Solutions Fast Track 493
Frequently Asked Questions 497

Chapter 12 Cradle to Grave: Working
with a Security Plan 499

Introduction 500
Examining Your Code 501

Code Reviews 502
Peer-to-Peer Code Reviews 504

Being Aware of Code Vulnerabilities 508
Testing,Testing,Testing 510

Using Common Sense When Coding 512
Planning 513
Coding Standards 514

Header Comments 514
Variable Declaration Comments 515

The Tools 516
Rule-Based Analyzers 516
Debugging and Error Handling 517
Version Control and Source Code
Tracking 518

Creating a Security Plan 520
Security Planning at the Network Level 522
Security Planning at the Application Level 523

Set up a checklist of
defects not easily
detected through
standard testing
methods for working
in a Java
environment:

■ Excessive copying of
strings—unnecessary
copies of immutable
objects

■ Failure to clone
returned objects

■ Unnecessary cloning

■ Copying arrays by hand

■ Copying the wrong
thing or making only a
partial copy

■ Testing new for null

■ Using == instead of
.equals

■ The confusion of
nonatomic and atomic
operations

■ The addition of
unnecessary
catchblocks

■ Failure to implement
equals, clone or
hashcode

137_hackapps_TOC 6/19/01 3:25 PM Page xxii

Contents xxiii

Security Planning at the Desktop Level 523
Web Application Security Process 524

Summary 527
Solutions Fast Track 528
Frequently Asked Questions 530

Appendix Hack Proofing Your Web
Applications Fast Track 533

Index 561

137_hackapps_TOC 6/19/01 3:25 PM Page xxiii

