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Understanding the
Current Legal Climate

This book will teach you
techniques that, if used in
the wrong way, will get
you in trouble with the
law. Me saying this is like
a driving instructor saying,
“I’m going to teach you
how to drive; if you drive
badly, you might run
someone over.” In both
cases, any harm done
would be your fault. 

Tools & Traps…

Want to Check that
Firewall?

There are an incredible
number of freeware tools
available to you for
beginning your checks of
vulnerability. I have a
couple of favorites that
allow for quick probes and
checks of information
about various IP
addresses:

■ SuperScan, from
Foundstone
Corporation:
www.foundstone.com/
knowledge/free_tools
.html

■ Sam Spade, from
SamSpade.org:
www.samspade.org.
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There are seven classes
of attacks: denial of
service (DoS),
information leakage,
regular file access,
misinformation, special
file/database access,
remote arbitrary code
execution, and
elevation of privileges.
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Q: Is decompiling and
other reverse
engineering legal? 

A: In the United States,
reverse engineering
may soon be illegal.
The Digital Millennium
Copyright Act includes
a provision designed to
prevent the
circumvention of
technological measures
that control access to
copyrighted works.
Source code can be
copyrighted, and
therefore makes the
reverse engineering of
copyrighted code
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Recursive Grepping

According to Ryan
Tennant’s (Argoth) Solaris
Infrequently Asked
Obscure Questions (IAOQ)
at http://shells.devunix
.org/~argoth/iaoq, a
recursive grep can be
performed using the
following command:  

/usr/bin/find . |

/usr/bin/xargs

/usr/bin/grep PATTERN
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privacy of
communications
include the following:

■ Can anyone else
monitor the traffic
within this tunnel?
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■ Can anyone else
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