
Contents

xiii

Foreword v 1.5 xxix

Foreword v 1.0 xxxiii

Chapter 1 How To Hack 1
Introduction 2
What We Mean by “Hack” 2

Why Hack? 3
Knowing What To Expect in the Rest of This Book 4
Understanding the Current Legal Climate 6
Summary 8
Frequently Asked Questions 8

Chapter 2 The Laws of Security 11
Introduction 12
Knowing the Laws of Security 12
Client-Side Security Doesn’t Work 14
You Cannot Securely Exchange Encryption

Keys without a Shared Piece of Information 15
Malicious Code Cannot Be

100 Percent Protected against 18
Any Malicious Code Can Be Completely

Morphed to Bypass Signature Detection 20
Firewalls Cannot Protect
You 100 Percent from Attack 22

Social Engineering 24
Attacking Exposed Servers 24
Attacking the Firewall Directly 26
Client-Side Holes 26

Any IDS Can Be Evaded 27
Secret Cryptographic Algorithms Are Not Secure 28
If a Key Is Not Required,You Do Not Have

Encryption—You Have Encoding 30
Passwords Cannot Be Securely Stored on

the Client Unless There Is Another Password
to Protect Them 32

In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit 35

Security through Obscurity Does Not Work 37

Understanding the
Current Legal Climate

This book will teach you
techniques that, if used in
the wrong way, will get
you in trouble with the
law. Me saying this is like
a driving instructor saying,
“I’m going to teach you
how to drive; if you drive
badly, you might run
someone over.” In both
cases, any harm done
would be your fault.

Tools & Traps…

Want to Check that
Firewall?

There are an incredible
number of freeware tools
available to you for
beginning your checks of
vulnerability. I have a
couple of favorites that
allow for quick probes and
checks of information
about various IP
addresses:

■ SuperScan, from
Foundstone
Corporation:
www.foundstone.com/
knowledge/free_tools
.html

■ Sam Spade, from
SamSpade.org:
www.samspade.org.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xiii

xiv Contents

Summary 39
Solutions Fast Track 39
Frequently Asked Questions 42

Chapter 3 Classes of Attack 45
Introduction 46
Identifying and Understanding the Classes

of Attack 46
Denial of Service 47

Local Vector Denial of Service 47
Network Vector Denial of Service 50

Information Leakage 56
Service Information Leakage 56
Protocol Information Leakage 58
Leaky by Design 60
Leaky Web Servers 60
A Hypothetical Scenario 61
Why Be Concerned with Information

Leakage? 61
Regular File Access 62

Permissions 62
Symbolic Link Attacks 63

Misinformation 65
Standard Intrusion Procedure 67

Special File/Database Access 69
Attacks against Special Files 69
Attacks against Databases 70

Remote Arbitrary Code Execution 72
The Attack 73
Code Execution Limitations 74

Elevation of Privileges 74
Remote Privilege Elevation 75

Identifying Methods of Testing for Vulnerabilities 77
Proof of Concept 77

Exploit Code 78
Automated Security Tools 79
Versioning 79

Standard Research Techniques 80
Whois 81
Domain Name System 86
Nmap 89
Web Indexing 90

There are seven classes
of attacks: denial of
service (DoS),
information leakage,
regular file access,
misinformation, special
file/database access,
remote arbitrary code
execution, and
elevation of privileges.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xiv

Contents xv

Summary 93
Solutions Fast Track 95
Frequently Asked Questions 96

Chapter 4 Methodology 99
Introduction 100
Understanding Vulnerability Research

Methodologies 100
Source Code Research 101

Searching For Error-Prone Functions 101
Line-By-Line Review 102
Discovery Through Difference 102

Binary Research 104
Tracing Binaries 104
Debuggers 105
Guideline-Based Auditing 105
Sniffers 105

The Importance of Source Code Reviews 106
Searching Error-Prone Functions 106

Buffer Overflows 106
Input Validation Bugs 110
Race Conditions 112

Reverse Engineering Techniques 113
Disassemblers, Decompilers, and Debuggers 120

Black Box Testing 125
Chips 126

Summary 128
Solutions Fast Track 129
Frequently Asked Questions 130

Chapter 5 Diffing 131
Introduction 132
What Is Diffing? 132

Why Diff? 135
Looking to the Source Code 136

Going for the Gold:A Gaming Example 139
Exploring Diff Tools 143

Using File-Comparison Tools 143
Using the fc Tool 143
Using the diff Command 145

Working with Hex Editors 146
Hackman 147
[N] Curses Hexedit 148
Hex Workshop 149

Q: Is decompiling and
other reverse
engineering legal?

A: In the United States,
reverse engineering
may soon be illegal.
The Digital Millennium
Copyright Act includes
a provision designed to
prevent the
circumvention of
technological measures
that control access to
copyrighted works.
Source code can be
copyrighted, and
therefore makes the
reverse engineering of
copyrighted code
illegal.

Recursive Grepping

According to Ryan
Tennant’s (Argoth) Solaris
Infrequently Asked
Obscure Questions (IAOQ)
at http://shells.devunix
.org/~argoth/iaoq, a
recursive grep can be
performed using the
following command:

/usr/bin/find . |

/usr/bin/xargs

/usr/bin/grep PATTERN

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xv

xvi Contents

Utilizing File System Monitoring Tools 150
Doing It The Hard Way: Manual

Comparison 150
Comparing File Attributes 151
Using the Archive Attribute 153
Examining Checksums and Hashes 154

Finding Other Tools 155
Troubleshooting 157

Problems with Checksums and Hashes 157
Problems with Compression and Encryption 159

Summary 160
Solutions Fast Track 161
Frequently Asked Questions 162

Chapter 6 Cryptography 165
Introduction 166
Understanding Cryptography Concepts 166

History 167
Encryption Key Types 167

Learning about Standard Cryptographic
Algorithms 169

Understanding Symmetric Algorithms 170
DES 170
AES (Rijndael) 172
IDEA 173

Understanding Asymmetric Algorithms 174
Diffie-Hellman 174
RSA 176

Understanding Brute Force 177
Brute Force Basics 177
Using Brute Force to Obtain Passwords 178

L0phtcrack 180
Crack 181
John the Ripper 182

Knowing When Real Algorithms
Are Being Used Improperly 183

Bad Key Exchanges 183
Hashing Pieces Separately 184
Using a Short Password to Generate

a Long Key 185
Improperly Stored Private or Secret Keys 186

Understanding Amateur Cryptography Attempts 188
Classifying the Ciphertext 189

John the Ripper

John the Ripper is another
password-cracking
program, but it differs
from Crack in that it is
available in UNIX, DOS,
and Win32 editions. Crack
is great for older systems
using crypt(), but John the
Ripper is better for newer
systems using MD5 and
similar password formats.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xvi

Contents xvii

Frequency Analysis 189
Ciphertext Relative Length Analysis 190
Similar Plaintext Analysis 190

Monoalphabetic Ciphers 191
Other Ways to Hide Information 191

XOR 191
UUEncode 195
Base64 195
Compression 197

Summary 199
Solutions Fast Track 200
Frequently Asked Questions 202

Chapter 7 Unexpected Input 205
Introduction 206
Understanding Why Unexpected Data

Is Dangerous 206
Finding Situations Involving Unexpected Data 208

Local Applications and Utilities 208
HTTP/HTML 208
Unexpected Data in SQL Queries 211
Application Authentication 215
Disguising the Obvious 220

Using Techniques to Find and Eliminate
Vulnerabilities 221

Black-Box Testing 222
Discovering Network and System

Problems 225
Use the Source 226
Untaint Data by Filtering It 227
Escaping Characters Is Not Always Enough 227
Perl 228
Cold Fusion/Cold Fusion

Markup Language (CFML) 229
ASP 229
PHP 230
Protecting Your SQL Queries 231
Silently Removing versus Alerting on

Bad Data 232
Invalid Input Function 232
Token Substitution 233

Utilizing the Available Safety Features
in Your Programming Language 233

Understanding Why
Unexpected Data Is
Dangerous

Almost all applications
interact with the user,
and thus take data
from them.

An application can’t
assume that the user is
playing by the rules.

The application has to
be wary of buffer
overflows, logic
alteration, and the
validity of data passed
to system functions.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xvii

xviii Contents

Perl 233
PHP 235
ColdFusion/ColdFusion Markup Language 235
ASP 236
MySQL 237

Using Tools to Handle Unexpected Data 237
Web Sleuth 237
CGIAudit 237
RATS 237
Flawfinder 238
Retina 238
Hailstorm 238
Pudding 238

Summary 239
Solutions Fast Track 239
Frequently Asked Questions 242

Chapter 8 Buffer Overflow 243
Introduction 244
Understanding the Stack 244

The Code 246
Disassembly 247

The Stack Dump 248
Oddities and the Stack 249

Understanding the Stack Frame 249
Introduction to the Stack Frame 250
Passing Arguments to a Function:
A Sample Program 250

The Disassembly 251
The Stack Dumps 254

Stack Frames and Calling Syntaxes 256
Learning about Buffer Overflows 257

A Simple Uncontrolled Overflow:
A Sample Program 259

The Disassembly 260
The Stack Dumps 262

Creating Your First Overflow 263
Creating a Program with an Exploitable

Overflow 264
Writing the Overflowable Code 264
Disassembling the Overflowable Code 265
Stack Dump after the Overflow 267

Performing the Exploit 267

Damage & Defense…

Understanding Assembly
Language

There are a few specific
pieces of assembly
language knowledge that
are necessary to
understand the stack. One
thing that is required is to
understand the normal
usage of registers in a
stack:

■ EIP The extended
instruction pointer.

■ ESP The extended
stack pointer.

■ EBP The extended
base pointer.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xviii

Contents xix

General Exploit Concepts 268
Buffer Injection Techniques 268
Methods to Execute Payload 269
Designing Payload 281
Performing the Exploit on Linux 282
Performing the Exploit on Windows NT 293

Learning Advanced Overflow Techniques 303
Input Filtering 303
Incomplete Overflows and Data

Corruption 304
Stack Based Function Pointer Overwrite 306
Heap Overflows 306

Corrupting a Function Pointer 307
Trespassing the Heap 307

Advanced Payload Design 310
Using What You Already Have 310

Dynamic Loading New Libraries 311
Eggshell Payloads 313

Summary 314
Solutions Fast Track 314
Frequently Asked Questions 317

Chapter 9 Format Strings 319
Introduction 320
Understanding Format String Vulnerabilities 322

Why and Where Do Format
String Vulnerabilities Exist? 326

How Can They Be Fixed? 327
How Format String Vulnerabilities
Are Exploited 328

Denial of Service 329
Reading Memory 329
Writing to Memory 330

How Format String Exploits Work 332
Constructing Values 333

What to Overwrite 335
Overwriting Return Addresses 335
Overwriting Global Offset Table

Entries and Other Function Pointers 335
Examining a Vulnerable Program 336
Testing with a Random Format String 340
Writing a Format String Exploit 344

Q: How can I eliminate or
minimize the risk of
unknown format string
vulnerabilities in
programs on my
system?

A: A good start is having
a sane security policy.
Rely on the least-
privileges model,
ensure that only the
most necessary utilities
are installed setuid and
can be run only by
members of a trusted
group. Disable or block
access to all services
that are not completely
necessary.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xix

xx Contents

Summary 356
Solutions Fast Track 356
Frequently Asked Questions 358

Chapter 10 Sniffing 361
Introduction 362
What Is Sniffing? 362

How Does It Work? 362
What to Sniff? 363

Obtaining Authentication Information 363
Monitoring Telnet (Port 23) 364
Monitoring FTP (Port 21) 364
Monitoring POP (Port 110) 365
Monitoring IMAP (Port 143) 365
Monitoring NNTP (Port 119) 366
Monitoring rexec (Port 512) 366
Monitoring rlogin (Port 513) 367
Monitoring X11 (Port 6000+) 368
Monitoring NFS File Handles 368
Capturing Windows NT Authentication

Information 369
Capturing Other Network Traffic 370

Monitoring SMTP (Port 25) 370
Monitoring HTTP (Port 80) 370

Popular Sniffing Software 371
Ethereal 371
Network Associates Sniffer Pro 372
NT Network Monitor 374
WildPackets 375
TCPDump 376
dsniff 377
Ettercap 380
Esniff.c 380
Sniffit 381
Carnivore 382
Additional Resources 385

Advanced Sniffing Techniques 385
Man-in-the-Middle (MITM) Attacks 385
Cracking 386
Switch Tricks 386

ARP Spoofing 386
MAC Flooding 387

Routing Games 388

Ethereal Capture
Preferences

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xx

Contents xxi

Exploring Operating System APIs 388
Linux 388
BSD 392
libpcap 392
Windows 395

Taking Protective Measures 395
Providing Encryption 395

Secure Shell (SSH) 396
Secure Sockets Layers (SSL) 397
PGP and S/MIME 397
Switching 398

Employing Detection Techniques 398
Local Detection 398
Network Detection 399

DNS Lookups 399
Latency 399
Driver Bugs 400
AntiSniff 400
Network Monitor 400

Summary 401
Solutions Fast Track 402
Frequently Asked Questions 404

Chapter 11 Session Hijacking 407
Introduction 408
Understanding Session Hijacking 408

TCP Session Hijacking 410
TCP Session Hijacking with Packet

Blocking 411
Route Table Modification 411
ARP Attacks 414

UDP Hijacking 415
Examining the Available Tools 416

Juggernaut 416
Hunt 420
Ettercap 425
SMBRelay 430
Storm Watchers 430

ACK Storms 431
Playing MITM for Encrypted Communications 433

Man-in-the-Middle Attacks 434
Dsniff 435
Other Hijacking 436

Understanding Session
Hijacking

The point of hijacking a
connection is to steal
trust.

Hijacking is a race
scenario: Can the
attacker get an
appropriate response
packet in before the
legitimate server or
client can?

Attackers can remotely
modify routing tables
to redirect packets or
get a system into the
routing path between
two hosts.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxi

xxii Contents

Summary 438
Solutions Fast Track 438
Frequently Asked Questions 440

Chapter 12 Spoofing: Attacks
on Trusted Identity 443

Introduction 444
What It Means to Spoof 444

Spoofing Is Identity Forgery 444
Spoofing Is an Active Attack

against Identity Checking Procedures 445
Spoofing Is Possible at All

Layers of Communication 445
Spoofing Is Always Intentional 446

Spoofing May Be Blind or Informed,
but Usually Involves Only Partial
Credentials 447

Spoofing Is Not the Same Thing as Betrayal 448
Spoofing Is Not Necessarily Malicious 448
Spoofing Is Nothing New 449

Background Theory 449
The Importance of Identity 450

The Evolution of Trust 451
Asymmetric Signatures between Human

Beings 451
Establishing Identity within Computer

Networks 453
Return to Sender 454
In the Beginning,There Was…

a Transmission 455
Capability Challenges 457

Ability to Transmit:“Can It Talk
to Me?” 457

Ability to Respond:“Can It Respond
to Me?” 459

Ability to Encode:“Can It Speak My
Language?” 463

Ability to Prove a Shared Secret:
“Does It Share a Secret with Me?” 465

Ability to Prove a Private Keypair:
“Can I Recognize Your Voice?” 467

Tools & Traps…

Perfect Forward Secrecy:
SSL’s Dirty Little Secret

The dirty little secret of
SSL is that, unlike SSH and
unnecessarily like standard
PGP, its standard modes
are not perfectly forward
secure. This means that an
attacker can lie in wait,
sniffing encrypted traffic
at its leisure for as long as
it desires, until one day it
breaks in and steals the
SSL private key used by
the SSL engine (which is
extractable from all but
the most custom
hardware).

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxii

Contents xxiii

Ability to Prove an Identity Keypair:
“Is Its Identity Independently
Represented in My Keypair?” 468

Configuration Methodologies:
Building a Trusted Capability Index 470

Local Configurations vs. Central
Configurations 470

Desktop Spoofs 471
The Plague of Auto-Updating Applications 471

Impacts of Spoofs 473
Subtle Spoofs and Economic Sabotage 474

Flattery Will Get You Nowhere 474
Subtlety Will Get You Everywhere 476
Selective Failure for Selecting Recovery 476
Bait and Switch: Spoofing the Presence

of SSL Itself 478
Down and Dirty: Engineering Spoofing Systems 486

Spitting into the Wind: Building
a Skeleton Router in Userspace 486

Designing the Nonexistent:The
Network Card That Didn’t Exist but
Responded Anyway 487

Implementation: DoxRoute, Section
by Section 488

Bring Out the Halon: Spoofing
Connectivity Through Asymmetric
Firewalls 510

Symmetric Outgoing TCP:
A Highly Experimental Framework
for Handshake-Only TCP
Connection Brokering 511

Summary 518
Solution Fast Track 519
Frequently Asked Questions 523

Chapter 13 Tunneling 527
Introduction 528
Strategic Constraints of Tunnel Design 530

Privacy:“Where Is My Traffic Going?” 532
Routability:“Where Can This Go Through?” 532
Deployability:“How Painful

Is This to Get Up and Running?” 533
Flexibility:“What Can
We Use This for,Anyway?” 534

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxiii

xxiv Contents

Quality:“How Painful Will
This System Be to Maintain?” 537

Designing End-to-End Tunneling Systems 537
Drilling Tunnels Using SSH 538

Security Analysis: OpenSSH 3.02 539
Setting Up OpenSSH 541

Open Sesame:Authentication 543
Basic Access:Authentication by Password 543
Transparent Access:Authentication by

Private Key 544
Server to Client Authentication 544
Client to Server Authentication 545

Command Forwarding: Direct
Execution for Scripts and Pipes 550

Port Forwarding:Accessing Resources on
Remote Networks 556

Local Port Forwards 557
Dynamic Port Forwards 560

Internet Explorer 6: Making the Web
Safe for Work 561

Speak Freely: Instant Messaging
over SSH 564

That’s a Wrap: Encapsulating Arbitrary
Win32 Apps within the Dynamic
Forwarder 566

Summoning Virgil: Using Dante’s
Socksify to Wrap UNIX Applications 567

Remote Port Forwards 569
When in Rome:Traversing

the Recalcitrant Network 571
Crossing the Bridge:Accessing

Proxies through ProxyCommands 571
No Habla HTTP? Permuting thy Traffic 575
Show Your Badge: Restricted

Bastion Authentication 576
Bringing the Mountain: Exporting

SSHD Access 579
Echoes in a Foreign Tongue:

Cross-Connecting Mutually
Firewalled Hosts 581

Not In Denver, Not Dead: Now What? 584
Standard File Transfer over SSH 584

Primary questions for
privacy of
communications
include the following:

■ Can anyone else
monitor the traffic
within this tunnel?
Read access, addressed
by encryption.

■ Can anyone else
modify the traffic
within this tunnel, or
surreptitiously gain
access to it? Write
access, addressed
primarily through
authentication.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxiv

Contents xxv

Incremental File Transfer over SSH 586
CD Burning over SSH 589
Acoustic Tubing:Audio

Distribution over TCP and SSH 593
Summary 598
Solutions Fast Track 600
Frequently Asked Questions 606

Chapter 14 Hardware Hacking 609
Introduction 610
Understanding Hardware Hacking 610
Opening the Device: Housing

and Mechanical Attacks 611
Types of Tamper Mechanisms 613

Tamper Resistance 615
Tamper Evidence 615
Tamper Detection 615
Tamper Response 617

External Interfaces 618
Protocol Analysis 620
Electromagnetic Interference

and Electrostatic Discharge 623
Analyzing the Product Internals: Electrical

Circuit Attacks 624
Reverse-engineering the Device 624
Basic Techniques: Common Attacks 627

Device Packaging 627
Memory Retrieval 628
Timing Attacks 629

Advanced Techniques: Epoxy
Removal and IC Delidding 630

Silicon Die Analysis 631
Cryptanalysis and Obfuscation Methods 632

What Tools Do I Need? 634
Starter Kit 634
Advanced Kit 635

Example: Hacking the iButton Authentication
Token 637

Experimenting with the Device 638
Reverse-engineering the “Random”

Response 639
Example: Hacking the NetStructure 7110

E-commerce Accelerator 642

Understanding
Hardware Hacking

Hardware hacking is done
for the following reasons:

■ General analysis of the
product to determine
common security
weaknesses and attacks

■ Access to the internal
circuit without
evidence of device
tampering

■ Retrieval of any internal
or secret data
components

■ Cloning of the device

■ Retrieving memory
contents

■ Elevation of privilege

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxv

xxvi Contents

Opening the Device 642
Retrieving the Filesystem 642
Reverse-engineering the Password

Generator 646
Summary 648
Solutions Fast Track 649
Frequently Asked Questions 652

Chapter 15 Viruses, Trojan Horses,
and Worms 655

Introduction 656
How Do Viruses,Trojans Horses, and
Worms Differ? 656

Viruses 656
Worms 657
Macro Virus 658
Trojan Horses 659
Hoaxes 660

Anatomy of a Virus 660
Propagation 660
Payload 662
Other Tricks of the Trade 663

Dealing with Cross-platform Issues 664
Java 664
Macro Viruses 665
Recompilation 665
Shockwave Flash 665

Proof that We Need to Worry 665
The Morris Worm 666
ADMw0rm 666
Melissa and I Love You 666
Sadmind Worm 673
Code Red Worms 674
Nimda Worm 675

Creating Your Own Malware 677
New Delivery Methods 678
Faster Propagation Methods 679
Other Thoughts on Creating New Malware 679

How to Secure Against Malicious Software 680
Anti-Virus Software 681
Updates and Patches 683
Web Browser Security 683
Anti-Virus Research 683

A “worm” is a program
that can run independ-
ently, will consume the
resources of its host from
within in order to main-
tain itself, and can propa-
gate a complete working
version of itself on to
other machines.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxvi

Contents xxvii

Summary 685
Solutions Fast Track 685
Frequently Asked Questions 687

Chapter 16 IDS Evasion 689
Introduction 690
Understanding How Signature-Based IDSs Work 690

Judging False Positives and Negatives 693
Alert Flooding 693

Using Packet Level Evasion 694
IP Options 696

Time-To-Live Attacks 696
IP Fragmentation 697
TCP Header 698
TCP Synchronization 699

TCB Creation 699
Stream Reassembly 700
TCB Teardown 701

Using Fragrouter and Congestant 701
Countermeasures 704

Using Application Protocol Level Evasion 705
Security as an Afterthought 705
Evading a Match 706

Alternate Data Encodings 706
Web Attack Techniques 707

Method Matching 708
Directory and File Referencing 708

Countermeasures 709
Using Code Morphing Evasion 709
Summary 713
Solutions Fast Track 714
Frequently Asked Questions 716

Chapter 17 Automated Security
Review and Attack Tools 719

Introduction 720
Learning about Automated Tools 720

Exploring the Commercial Tools 725
CyberCop Scanner 728
Internet Security Systems (ISS)

Internet Scanner 728
BindView’s BV-Control for Internet Security 729
eEye Retina 729

Tools & Traps…

Baiting with Honeynets

Recently, there has been
an upsurge in the use of
honeynets as a defensive
tool. A honeynet is a
system that is deployed
with the intended purpose
of being compromised.
These are hyper defensive
tools that can be imple-
mented at any location
inside a network. The cur-
rent best known configu-
ration type for these tools
is where two systems are
deployed, one for the bait,
the other configured to
log all traffic.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxvii

Deciding How Much
Detail to Publish

Take great care in
deciding whether or
not you want to
provide exploit code
with your NSF report.

You must be prepared
to take a slight risk
when reporting
security flaws. You
could end up facing
the vendor’s wrath.

Be extra cautious in
describing any security
flaw that requires the
circumvention of a
vendor’s copyright
protection
mechanisms.

xxviii Contents

Other Products 729
Exploring the Free Tools 730

Nessus 730
Security Administrators

Integrated Network Tool (SAINT) 731
Security Administrators Research
Assistant (SARA) 732

ShadowScan 732
Nmap and NmapNT 732
Whisker 733
VLAD the Scanner 733
Other Resources 734

Using Automated Tools for Penetration Testing 734
Testing with the Commercial Tools 734
Testing the Free Tools 739

Knowing When Tools Are Not Enough 743
The New Face of Vulnerability Testing 744

Summary 745
Solutions Fast Track 745
Frequently Asked Questions 746

Chapter 18 Reporting Security Problems 749
Introduction 750
Understanding Why Security

Problems Need to Be Reported 750
Full Disclosure 752

Determining When and to
Whom to Report the Problem 755

Whom to Report Security Problems to? 755
How to Report a Security Problem

to a Vendor 758
Deciding How Much Detail to Publish 759

Publishing Exploit Code 759
Problems 760

Repercussions from Vendors 760
Reporting Errors 762
Risk to the Public 762

Summary 763
Solutions Fast Track 763
Frequently Asked Questions 765

Index 767

Vulnerability Scanners
by Number

Vulnerability
Product Count

ISS Internet 976
Scanner

NAI 830
CyberCop
Scanner

BV Control 900
for Internet
Security

Harris 1,200
STAT
Scanner

Symantec 600
NetRecon

eEye Retina 820

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxviii

