
PREFACE xi
INTRODUCTION xv
If a software project is to be successful, every team member must understand
the principles, guidelines, and strategies that will result in quality software
shipped on time. This book is for every team member. It's a companion to Writing

Solid Code, which focused on the most serious "bug" in the development
process: too many software bugs. The advice in this book fine-tunes the develop-
ment process, focusing on the techniques and strategies that software teams

can use to become consistently successful. This book contains many anecdotal

examples, most of them drawn from experiences at Microsoft. To make the ex-
amples easier to follow, the introduction provides a brief account of how soft-

ware development projects are organized and how they proceed at Microsoft.

1 LAYING THE GROUNDWORK 1
There are a few principles that all successful software project leads keep
in mind. Among the foremost is the idea that the programmers should
be working only on tasks that either directly or indirectly improve the
product. It's the lead's job to clear the way for the primary work of the
other team members by ruthlessly eliminating work that gets in the way
of improving the product—going overboard on status reports and meet-
ings, for example, or developing features that are not strategic to either
the product or the company. To make it easy to determine which tasks
are strategic and which are wasted effort, leads should create detailed
project goals and priorities. The more detailed the goals and priorities
are, the easier it is to spot wasteful work.

2 THE SYSTEMATIC APPROACH 23

It's amazing how a relatively trivial work habit or process can produce a
major difference in results. Ideally, the habit or process will take little or
no effort to put into practice and its effectiveness won't depend on the
skill levels of the programmers who use it. To elicit the best strategies for



DEBUGGING THE DEVELOPMENT PROCESS

working effectively, leads should pose the problems they're trying to
solve as increasingly refined questions. A lead shouldn't ask, for ex-
ample, "How can we consistently hit our ship dates?" which can result
in a number of undesirable solutions. The lead should instead ask a more
specific, more beneficial question: "How can we consistently hit our
ship dates without hiring more people and without forcing the develop-
ers to work overtime?" Leads should try to incorporate negative feed-
back loops into the strategies they develop. And when they present work
strategies to the rest of the team, they should be sure to remind the team
that even a good strategy or guideline won't necessarily be effective in
every situation.

3 OF STRATEGIC IMPORTANCE 45
Projects can go astray in so many subtle ways that leads must never let
projects coast, assuming that their projects are on course and will run
themselves. To keep a project running smoothly, a lead must constantly
monitor the project, looking ahead and taking care of problems while
they're still small. To keep a project on schedule, a lead should ask this
question each day: "What can I do today that will help keep the project
on track for the next few months?" By asking this question every day
and seriously looking for answers, a lead can foresee all sorts of prob-
lems that might otherwise blindside the project. To prevent wasted
effort, a lead should assess every request in order to identify the real
problem or goal and should be sure that every task fulfills the project's
goals and priorities. Some tasks, such as meeting the marketing team's
request to fill out a feature set, or implementing a free feature that has
popped out of a programmer's design, might not be at all strategic. A
good lead learns to say No.

4 UNBRIDLED ENTHUSIASM : 73

If a lead wants to get a software development team going on a creative
roll, he or she must create a development atmosphere that fosters that
kind of enthusiasm. Unfortunately, as companies grow from small
mom-and-pop shops to corporate mega-shops, the amount of non-
development work that programmers are routinely saddled with rises
dramatically. The lead should work to eliminate unnecessary reports
and meetings and other corporate processes that hinder the develop-

Vlll



CONTENTS

ment effort. The simpler such processes become, the better. If program-
mers are given the opportunity to work unhindered by overblown cor-
porate processes, they have a much better chance of catching a creative
wave and moving the project forward. The critical point is that leads
should always work to address their actual, rather than formal, needs.
Asking for a report or holding a meeting is a common way to gather
information, but if there are other, more effective ways to gather infor-
mation (and there are), why burden programmers with reports and
meetings?

5 SCHEDULING MADNESS : 91

In most companies, the development team needs to maintain a schedule
so that other groups in the company can coordinate their work with the
programming effort. At the very least, the marketing team needs to have
some idea of when they should start advertising the product. But as im-
portant as schedules are for coordinating the work of the various prod-
uct teams, they can have a devastating effect on development if they are
not devised and used wisely. An unattainable schedule can demoralize
the team and ultimately killj productivity. A schedule that is merely too
aggressive can lead to slip hysteria, in which programmers take short-
cuts to meet the schedule in the short term, jeopardizing the product
over the long term. A schedule should be aggressive enough to keep the
project running at a brisk pace, but if it is too aggressive, programmers
will make stupid decisions despite their better judgments. Any pro-
grammer who has decided that he doesn't have time to thoroughly test
his code is guilty of putting the schedule ahead of the product. By using
"milestone scheduling," leads can not only coordinate better with other
teams but also make projects much more exciting and foster creative
rolls in which teams crank out high-quality code at a prodigious rate.

6 CONSTANT, UNCEASING IMPROVEMENT 107
Leads can streamline the development process to a point at which every
team member is focused only on strategic work. But if leads want their
projects to really take off, they have to focus on training so that every
team member is regularly learning a wide variety of broadly useful new
skills. One method for ensuring that team members actively grow is to
align personal growth goals with the two-month project milestones

IX



DEBUGGING THE DEVELOPMENT PROCESS

described in Chapter 5, which could give each team member at least six
important new skills a year. Programmers can and do pick up skills in
the normal course of the job, but their growth is much slower in that pas-
sive approach to learning. By ensuring through work assignments and
overt educational goals that programmers actively learn new skills,
leads help the project and the company and advance the programmers'
careers.

7 IT'S ALL ABOUT ATTITUDE 125

Increasing a team member's skill through active learning is great, but
leads can get the most impressive results when they focus on correcting
harmful attitudes and promoting beneficial ones. The effects of a new
attitude sweep across all work that a programmer will do. That's the
leverage behind good attitudes. Chapter 7 takes a hard look at the com-
mon programmer attitudes that work to the detriment of project success:
bugs are inevitable, I'll fix bugs later, it'll take too much time to do things
right, it's good enough for users, it's better to give the user something
than nothing, we'll do our thing and you do yours, it's just for in-house
use...

8 THAT SINKING FEELING 151

When a project schedule starts to slip, a natural reaction is to hire more
people and force the team to work longer hours. But throwing more pro-
grammers at the project and forcing everybody to work overtime won't
correct the underlying problems that caused the project to slip in the
first place. If a team is working 80-hour weeks to meet a 40-hour sched-
ule, something is seriously wrong. The lead needs to go after causes and
(sometimes) to protect the programmers from assumptions—their own
and upper management's—about the tonic effects of long hours. Hiring
more people or demanding long hours only masks the problems affect-
ing the project. Leads should find and fix the problems, not cover them
over.

EPILOGUE A WORD ON LEADING 171
REFERENCES 175
INDEX 177


