Preface

This book discusses COM+ component services. Each service is
covered in its own chapter, and each chapter discusses a similar
range of issues: the problem the service addresses, possible
solutions to that problem, an in-depth description of the COM+
solution, tradeoffs, design, and implementation guidelines, tips, and
known pitfalls. | have tried to provide useful design information and
lessons | learned while applying COM+. | also describe COM+ helper
classes and utilities | developed that will enhance your productivity
significantly. (The COM+ Events helper objects and the COM+
Logbook are prime examples.) This book focuses on the "how to"—
that is, it provides practical information. You should read the
chapters in order, since most chapters rely on information discussed
in the preceding chapters. The book also aims to explain COM+ step
by step. A software engineer already familiar with COM who wants
to know what COM+ is and how to use it can read this book and
start developing COM+ applications immediately.

Scope of This Book

Here is a brief summary of the chapters and appendixes in this
book:

e Chapter 1 introduces the Component Services Explorer and
basic COM+ terminology. This chapter deliberately holds your
hand as you develop your first "Hello World" COM+
component. Subsequent chapters do much less handholding
and assume you are familiar with the COM+ environment. If
you already have experience with basic COM+ development,
feel free to skip this chapter.

e Chapter 2 demystifies the COM+ context by presenting it as
the key mechanism for providing component services using
call interception. Generally, you need not be concerned with
contexts at all. However, the COM+ context underlies the way
COM+ services are implemented.

e Chapter 3 describes two scalability-enabling mechanisms that
COM+ provides for a modern enterprise application: object
pooling and Just-in-Time Activation (JITA). The discussion of
instance management, and especially JITA, is independent of
transactions. Early COM+ documentation and books tended to
couple instance management and transactions. However, |
found that not only can you use instance management
independently of transactions, but it is easier to explain it that

10

way. Besides explaining how to best use object pooling and
JITA, Chapter 3 describes other activation and instance
management COM+ services such as the constructor string.
Chapter 4 explains the difficult, yet common, problems that
transactions address, and provides you with a distilled
overview of transaction processing and the transaction
programming model. The difficult part of writing this chapter
was finding a way to convey the right amount of transaction
processing theory. | want to help you understand and accept
the resulting programming model, but not bury you in the
details of theory and COM+ plumbing. This chapter focuses on
COM+ transaction architecture and the resulting design
considerations you have to be aware of.

Chapter 5 first explains the need in the component world for a
concurrency model and the limitations of the classic COM
solution. It then describes how the COM+ solution, activities,
improves deficiencies of apartments.

Chapter 6 shows how to access component and application
configuration information programmatically using the COM+
Catalog interfaces and objects. Programmatic access is
required when using some advanced COM+ services and to
automate setup and development tasks. This chapter provides
you with comprehensive catalog structure diagrams, plenty of
sample code, and a handy utility.

Chapter 7 explains how to secure a modern application using
the rich and powerful (yet easy to use) security infrastructure
provided by COM+. This chapter defines basic security
concepts and shows you how to design security into your
application from the ground up. You can design this security
by using COM+ declarative security via the Component
Services Explorer and by using advanced programmatic
security.

Chapter 8 explains what COM+ queued components are and
how to use them to develop asynchronous, potentially
disconnected applications and components. In addition to
showing you how to configure queued components, this
chapter addresses required changes to the programming
model. If you have ever had to develop an asynchronous
method invocation option for your components, you will love
COM+ queued components.

Chapter 9 covers COM+ loosely coupled events, why there is
a need for such a service, and how the service ties into other
COM+ services described in earlier chapters (such as
transactions, security, and queued components). Many people
consider COM+ events their favorite service. If you have had
to confront COM connection points, you will appreciate COM+
Events.

11

e Chapter 10 shows how .NET components can take advantage
of the component services described in the previous chapters.
If you are not familiar with .NET, | suggest you read Appendix
C first—it contains an introduction to .NET and C#. Chapter
10 repeats in C# many of the C++ or VB 6.0 code samples
found in earlier chapters, showing you how to implement
them in .NET.

 Appendix A helps you develop a useful and important utility—
a flight recorder that logs method calls, errors, and events in
your application. Logging is an essential part of every
application and is especially important in an enterprise
environment. The logbook is also an excellent example of the
synergies arrived at by combining multiple COM+ services. It
is also a good representation of the design approaches you
may consider when combining services.

 Appendix B describes the changes, improvements, and
enhancements introduced to COM+ in the next release of
Windows, Windows XP. Instead of writing the book as if
Windows XP were available now (as of this writing it is only in
beta), | chose to write the book for the developer who has to
deliver applications today, using Windows 2000. When you
start using Windows XP, all you need to do is read Appendix
B—it contains the additional information you need.

« Appendix C describes the essential elements of the .NET
framework, such as the runtime, assemblies, and how to
develop .NET components. The appendix allows a reader who
is not familiar with .NET to follow Chapter 10.

Some Assumptions About the Reader

| assume that you are an experienced COM developer who feels
comfortable with COM basics such as interfaces, CoClasses, and
apartments. This book is about COM+ component services, not the
component technology used to develop a COM/DCOM or .NET
component. You can still read the book without this experience, but
you will benefit more by having COM under your belt. | assume you
develop your components mostly in C+ + and ATL and that you
write occasional, simple client code in Visual Basic. | also use trivial
C# in Chapter 10 to demonstrate how .NET takes advantage of
COM+ services, but you don't need to know C# to read that
chapter. A .NET developer should also find this book useful: read
and understand the services in Chapter 1 through Chapter 9, and
then use Chapter 10 as a reference guide for the syntax of .NET
attributes.

12

Definitions and Text Conventions

The following definitions and conventions apply throughout this
book:

e A component is an implementation of a set of interfaces. A
component is what you mark in your IDL file (or type library)
with CoClass or a class in C# .

« An object is an instance of a component. You can create
objects by calling CoCreateInstance() in C++, specifying
the class ID (the type) of the object you want to create. If you
use Visual Basic 6.0, you can create objects using new or
CreateObject (). A C# client uses new to create a new
instance of a component.

e | use the following terms in the book: CoCreating refers to
calling CoCreateInstance () in C++, Or new or
CreateObiject () in Visual Basic. Querying an object for an
interface refers to calling IUnknown: :QueryInterface() on
the object. Releasing an object refers to calling
IUnknown: :Release () on the object.

e The graphical notations in Figure P-1 are used in almost every
design diagram in the book. The "lollipop" denotes an
interface, and a method call on an interface is represented by
an arrow beginning with a full circle.

Figure P-1. Interface and method call graphical notations

T [OM Interfoce

Object Method coll on
(M Interfoce

Client

e Error handling in the code samples is rudimentary. The code
samples serve to demonstrate a design or a technical point,
and cluttering them with too much error handing would miss
the point. In a production environment, you should verify the
returned HRESULT of every COM call, catch and handle
exceptions in C#, and assert every assumption.

| use the following font conventions in this book:

o J[talicis used for new terms, citations, online links, filenames,
directories, and pathnames.

e Constant width is used to indicate command-line computer
output and code examples, as well as classes, constants,
functions, interfaces, methods, variables, and flow-controlled
statements.

13

e Constant-width bold is used for code emphasis and user
input.

e Constant-width italic is used to indicate replaceable
elements in code statements.

This icon indicates a note or tip.

= This icon indicates a warning.

Other COM+ Books and References

This book describes how to use COM+ component services in your
application. It focuses on how to apply the technology, how to avoid
specific pitfalls, and design guidelines. If you want to know more
about COM+ in general and the nature of component technology, |
recommend the following two books that helped me a great deal in
my attempt to grasp COM+.

COM+ and the Battle for the Middle Tier by Roger Sessions (John
Wiley & Sons, 2000) is hands down the best "why" COM+ book. It
explains in detail, with excellent examples and in plain language,
the need for software components and component services. For
example, instead of the page or two this book includes on the
motivation for using transactions, Sessions devotes two fascinating
chapters to the topic. The book goes on to compare existing
component technologies (such as COM, CORBA, and Java) and their
corresponding suites of component services. It also contains a few
case studies from real-life systems that use COM+ . Roger Sessions
also has a unique way of eloquently naming things—providing the
most appropriate term, which is often not the name Microsoft uses.
Whenever it makes sense, this book uses Sessions' terminology,
such as "instance management" instead of the Microsoft term
"activation."

Understanding COM+ by David S. Platt (Microsoft Press, 1999) is
probably the best "what" COM+ book. The book describes the
services available by COM+ and provides sidebar summaries for the
busy reader. It is one of the first COM+ books, and Platt worked on
it closely with the COM+ team.

| also used the MSDN Library extensively, especially the
"Component Services" section, while writing this book. Although the
information in this library tends to be terse, the overall structure is
good. Use this book to learn how to apply COM+ productively and

14

effectively, and use the MSDN Library as a reference for technical
details and a source for additional information.

How to Contact Us

We have tested and verified the information in this book to the best
of our ability, but you may find that features have changed (or even
that we have made mistakes!). Please address comments and
questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

The web site for the book lists examples, errata, and plans for
future editions. You can access this page at:
http://www.oreilly.com/catalog/comdotnetsvs

To ask technical questions or comment on this book, send email to:
bookquestions@oreilly.com

Or to me directly:

juval.lowy@componentware.net

For more information about our books, conferences, software,
resource centers, and the O’Reilly Network, see our web site:
http://www.oreilly.com

Acknowledgments

A book is by no means the product of just the author’s work. It is
the result of many events and individuals, like links in a chain. |
cannot possibly name everyone, ranging from my parents to my
friends. | am especially grateful for my two friends and colleagues,
Marcus Pelletier and Chris W. Rea. Marcus worked with me on large
COM+ projects, and together we confronted the unknown. Marcus’s
thoroughness and technical expertise is a model for every
programmer. Chris’s comments and insight into a reader’s mind
have contributed greatly to this book’s accuracy, integrity, and flow.
| wish to thank Yasser Shohoud for verifying my approach to
transaction processing and sharing with me his own, Richard Grimes
for reviewing the book, and Roger Sessions for writing the
Foreword. Thanks also to Johnny Blumenstock for providing me with
a place to write. Finally, this book would not be possible without my

15

