Preface

In the five years since the first edition of STL Tutorial and Reference Guide
appeared, the C++ language standard has been finalized and officially ac-
cepted, C++ compiler vendors have made great progress in bringing their
compilers into compliance with the standard, and dozens of other books and
magazine articles have appeared that describe and explain the standardized
language and libraries. Many of these books and articles have highlighted
the Standard Template Library (STL) as the most significant addition to
the standard. Some hailed it, as we did in this book’s first edition, as having
the potential to revolutionize the way a large number of people program.
The past five years have already seen much of that potential realized, with
the first edition of this book playing a key role for tens of thousands of pro-
grammers. We wrote in the preface of the first edition that there are five
reasons why the STL components could become some of the most widely
used software in existence:

e C++ is becoming one of the most widely used programming languages
(in large part due to the support it provides for building and using
component libraries).

e Since STL has been incorporated into the ANSI/ISO standard for
C++ and its libraries, compiler vendors are making it part of their
standard distributions.

e All components in STL are generic, meaning that they are adaptable

(by language-supported compile-time techniques) to many different
uses.

xxxi



Preface

e The generality of STL components has been achieved without sacri-
ficing efficiency.

e The design of STL components as fine-grained, interchangeable build-
ing blocks makes them a suitable basis for further development of
components for specialized areas such as databases, user interfaces,
and so forth.

We have enjoyed seeing these statements borne out by the developments of
the past five years.

Changes in the Second Edition

In this new edition we have added substantially more tutorial material in-
cluding expanded chapters in Part I on function objects and container, it-
erator, and function adaptors, and two entirely new chapters in Part II
containing substantial new examples. We have also gone through all ex-
ample code and surrounding discussion, including the reference material in
Part ITI, to bring them up to date with the final standard. (Although some
ambiguities in the standard have been discovered since it was finalized, we
believe that in most cases the remaining uncertainties about the meaning
of STL component specifications have no important consequences for the
practicing programmer. In the few cases where they might, we point them
out.) We also added a new chapter in Part III describing utility components
such as the pair and comparison classes, and a new appendix describing the
STL-related features of the standard string class.

In this edition we have also adopted the “literate programming” style
for presenting example programs and code fragments. For readers unfa-
miliar with this approach to simultaneous programming and documenting,
a brief explanation is given in Chapter 2 and more details are presented
in Chapter 12. One benefit of the literate programming approach is that
coding details can be presented once and then referred to (by name and
page number) many times, so readers do not have to read through the same
details repeatedly. Another major benefit is that we have been able check
even more thoroughly than before that all code is syntactically and logically
correct, since literate programming tools make it easy to extract the code
directly from the manuscript and compile and test it. A list of the compilers
the code has been compiled and tested with is given in Appendix D.

xxxii



Preface

Some History, from the Preface to the First Edition

Virtually all C++ programmers know that this language was originated by
one person, Bjarne Stroustrup, who began thinking of how to extend the C
language to support definition of classes and objects as early as 1979. So
too, the architecture of STL is largely the creation of one person, Alexander
Stepanov.

It is interesting that it was also in 1979, at about the same time as
Stroustrup’s initial research, that Alex began working out his initial ideas
of generic programming and exploring their potential for revolutionizing
software development. Although Dave Musser had developed and advo-
cated some aspects of generic programming as early as 1971, it was limited
to a rather specialized area of software development (computer algebra).
Alex recognized the full potential for generic programming and persuaded
his then-colleagues at General Electric Research and Development (includ-
ing, primarily, Dave Musser and Deepak Kapur) that generic programming
should be pursued as a comprehensive basis for software development. But
at that time there was no real support in any programming language for
generic programming. The first major language to provide such support
was Ada, with its generic units feature, and by 1987 Dave and Alex had
developed and published an Ada library for list processing that embodied
the results of much of their research on generic programming. However, Ada
had not achieved much acceptance outside the defense industry, and C++
seemed more likely to become widely used and provide good support for
generic programming, even though the language was relatively immature (it
did not even have templates, added only later). Another reason for turning
to C++, which Alex recognized early on, was that the C/C++ model of
computation, which allows very flexible access to storage (via pointers), is
crucial to achieving generality without losing efficiency.

Still, much research and experimentation were needed, not just to de-
velop individual components, but more important to develop an overall ar-
chitecture for a component library based on generic programming. First at
AT&T Bell Laboratories and later at Hewlett-Packard Research Labs, Alex
experimented with many architectural and algorithm formulations, first in
C and later in C++. Dave Musser collaborated in this research, and in 1992
Meng Lee joined Alex’s project at HP and became a major contributor.

This work undoubtedly would have continued for some time as just a
research project or at best would have resulted in an HP proprietary library,
if Andrew Koenig of Bell Labs had not become aware of the work and

xxxiii



Preface

asked Alex to present the main ideas at a November 1993 meeting of the
ANSI/ISO committee for C++ standardization. The committee’s response
was overwhelmingly favorable and led to a request from Andy for a formal
proposal in time for the March 1994 meeting. Despite the tremendous time
pressure, Alex and Meng were able to produce a draft proposal that received
preliminary approval at that meeting.

The committee had several requests for changes and extensions (some of
them major), and a small group of committee members met with Alex and
Meng to help work out the details. The requirements for the most signifi-
cant extension (associative containers) had to be shown to be consistent by
fully implementing them, a task Alex delegated to Dave Musser. It would
have been quite easy for the whole enterprise to spin out of control at this
point, but again Alex and Meng met the challenge and produced a proposal
that received final approval at the July 1994 ANSI/ISO committee meeting.
(Additional details of this history can be found in an interview Alex gave in
the March 1995 issue of Dr. Dobb’s Journal.)

Spreading the Word

Subsequently, the Stepanov and Lee document [?] was incorporated into the
ANSI/ISO C++ draft standard ([?], parts of clauses 17 through 27). It
also influenced other parts of the C++ Standard Library, such as the string
facilities, and some of the previously adopted standards in those areas were
revised accordingly.

In spite of STL’s success with the committee, there remained the ques-
tion of how STL would make its way into actual availability and use. With
the STL requirements part of the publicly available draft standard, compiler
vendors and independent software library vendors could of course develop
their own implementations and market them as separate products or as sell-
ing points for their other wares. One of the first edition’s authors, Atul
Saini, was among the first to recognize the commercial potential and be-
gan exploring it as a line of business for his company, Modena Software
Incorporated, even before STL had been fully accepted by the committee.

The prospects for early widespread dissemination of STL were consider-
ably improved with Hewlett-Packard’s decision to make its implementation
freely available on the Internet in August 1994. This implementation, de-
veloped by Stepanov, Lee, and Musser during the standardization process,
became the basis of all implementations offered by compiler and library
vendors today.

XXX1v



Preface

Also in 1994, Dave Musser and Atul Saini developed the STL++ Manual,
the first comprehensive user-level documentation of STL, but they soon
recognized that an even more comprehensive treatment of STL was needed,
one that would have better and more complete coverage of all aspects of the
library. In an attempt to meet this goal, and with much encouragement and
assistance from their editor, Mike Hendrickson, they wrote the first edition
of this book.

In the second edition, the two original authors are joined by Gillmer
J. Derge, President and CEO of the consulting firm Toltec Software Ser-
vices, Inc. He has been developing applications with C++ for more than a
decade, including seven years with General Electric Corporate R&D, where
he received a Whitney Award for technical achievement.

Acknowledgments for the First Edition

We gratefully acknowledge the encouragement and assistance of many peo-
ple. First and foremost, Alex Stepanov and Meng Lee offered continuous
encouragement and were always available to help straighten out any miscon-
ceptions we had about the design of the library. Invaluable assistance with
code development and testing was provided by several Modena staff mem-
bers, including Atul Gupta, Kolachala Kalyan, and Narasimhan Rampalli.
Several reviewers of earlier drafts gave us much valuable feedback and helped
us find ways to present the most crucial ideas more clearly. They include
Mike Ballantyne, Tom Cargill, Edgar Chrisostomo, Brian Kernighan, Scott
Meyers, Larry Podmolik, Kathy Stark, Steve Vinoski, and John Vlissides.
Others who also made valuable suggestions include Dan Benanav, Bob Cook,
Bob Ingalls, Nathan Schimke, Kedar Tupil, and Rick Wilhelm. Finally, we
thank the team at Addison-Wesley for their expert editorial and production
assistance: Kim Dawley, Katie Duffy, Rosa Gonzalez, Mike Hendrickson,
Simone Payment, Avanda Peters, John Wait, and Pamela Yee.

Acknowledgments for the Second Edition

For assistance with this edition, we wish first of all to thank the review-
ers for pointing out errors in the discussion and examples and suggesting
many other improvements in the presentation. The extensive comments of
Max A. Lebow, Lawrence Rauchwerger, and Jan Christiaan van Winkel were
especially helpful. We also thank Deborah Lafferty, our editor, and Julie De-

XXXV



Preface

Baggis, who served as editor during the early planning of the second edition.
Several other members of the production and marketing teams at Addison
Wesley helped in many ways, including Jacquelyn Doucette, Chanda Leary-
Coutu, Curt Johnson, Jennifer Lawinski, and Marty Rabinowitz.

D.R.M.
Loudonville, NY

G.J.D.
Cohoes, NY

AS.
Los Gatos, CA

October 2000

xXxxVvi



	Contents
	List of Examples
	Foward
	Preface
	Part I Tutorial Introduction to STL
	Chapter 1 Introduction




