Ant: The Definitive Guide

Foreword

I have to confess that I had absolutely no idea that Ant, the little build tool that could, would
go as far as it did and make such a mark on the Java developer community. When I wrote
the first version of Ant, it was a simple hack to help me solve a cross-platform build problem
that I was having. Now it's grown up and being used by thousands of developers all over
the planet. What's the magic behind this? How did this little program end up being used by so
many people? Maybe the story of how Ant came to be holds some clues.

Ant was first written quite some time before it was checked into Apache's CVS servers. In
mid-1998, I was given the responsibility at Sun Microsystems to create the Java Servlet 2.1
specification and a reference implementation to go with it. This reference implementation,
which I named Tomcat, was to be a brand new codebase, since the previous reference
implementation was based somewhat on code from the Java Web Server, a commercial
product that was migrated from JavaSoft to iPlanet. Also, the new implementation had to be
100% Pure Java.

In order to get the 100% Pure Java certification, even for those of us working on the Java
Platform at Sun, you had to show Key Labs (an independent certification company) that you
could run on three different platforms. To ensure that the servlet reference implementation
would run anywhere, I picked Solaris, Windows, and the Mac OS. And not only did I want
Tomcat to run on these three platforms, but I wanted to be able to build and develop on all
three platforms as well as on Linux. I tried using GNU Make. And shell scripts. And batch
files. And God knows what else. Each approach had its own unique problem. The problems
stemmed from the fact that all of the existing tools had a worldview rooted in building C
programs. When these practices were applied to Java, they worked, but slowly. Even though
Java programs themselves can perform well, the startup overhead associated with the Java
Virtual Machine is lengthy. And when Make creates a new instance of the VM with every file
that needs to be compiled, compile times grow linearly with the number of source files in
a project.

I tried many approaches to write a make file that would cause all of the source files in
a project that needed to be recompiled to be passed to javac in one go. But, no matter how
hard I tried, and how many Make wizards I consulted with, I couldn't get an approach that
would work the same way on multiple platforms. I got very, very tired of the /&#$%#ing tab
formatting of make files. As much as I've been a proponent of Emacs in my life, any tool that
requires Emacs to properly write its files so that you can make sure that no unintended spaces
creep in should not be tolerated.'

It was on a flight back from a conference in Europe that I finally got fed up once and for all of
trying to create some make file that would work the same way everywhere. I decided to
"make" my own tool: one that would examine all the Java source files in a project, compare
them with any compiled classes, and pass the list of sources that needed to be compiled
directly to javac. In addition, it would do a couple of other things like stuff all the classes into
a JAR file and copy some other files around to make a distributable version of the software. In
order to ensure that things would work the same way on every supported platform, I decided
to write the tool in Java.

! I've been told that the original designer of the make file format knew after the first week that the tab thing would be a problem. But he already had
dozens of users and didn't want to break compatibility.



Ant: The Definitive Guide

A few hours later, I had a working tool. It was simple, crude, and consisted of just a few
classes. It used the functionality of java.util.Properties to serve as its data layer. And it
worked. Beautifully. My compile times dropped by an order of magnitude. When I got back
to the states and tested it out on Solaris, Linux, and Mac OS, it worked just fine on all of
them. Its biggest problem at that time was that the number of things it could do was limited to
compiling files and copying files — and that this functionality was hardcoded.

A few weeks later I showed the tool, which I had named Ant because it was a little thing that
could build big things,” to my friend Jason Hunter (author of Java Serviet Programming,
published by O'Reilly). Jason thought that it was a decent enough tool, but didn't really think
it was a big deal. That is, until I mentioned that I was thinking of using Java's reflection
abilities to provide a clean way to extend Ant's abilities so that a programmer could write their
own tasks to extend it. Then the light bulb went off over his head and I had my first Ant user
as well as evangelist. Jason also has an uncanny ability to find a bug in any piece of software
within moments and helped me stomp out quite a few problems.

Once the reflection layer was in place, I wrote a few more tasks and Ant became useful to
other groups at Sun. However, the build file format was getting a bit bulky. Properties files
don't really lend themselves to hierarchical grouping well, and with the introduction of tasks
came the idea of targets (collections of tasks). I played around with a few different ways of
solving the problem, but hit on the solution when I was on another flight back from Europe.
This solution structured the project-target-task hierarchy to follow an XML document
hierarchy. It also leveraged the reflection work I had done earlier to associate XML tag names
with task implementations.

Evidently I do my best coding while flying over the ocean. I wonder if there's something
about the increased radiation at high altitude that helps. Or maybe trips to Europe bring out
something creative in me. Only more experimentation will tell.

Ant, as we know it, had come into being. Everything that you see in the version of Ant that
you use today (the good and the bad) is a result of the decisions made up to that point. To be
sure, a lot has changed since then, but the basics were there. It was essentially this source
code that was checked into Apache's CVS repository alongside Tomcat in late 2000. I moved
on to other things, principally being Sun's representative to the Apache Software Foundation
as well as working on XML specifications such as JAXP from Sun and DOM from the W3C.

Amazingly enough, people all over the world started talking about Ant. The first people to
find it were those that worked on Tomcat at Apache. Then they told their friends about it. And
those friends told their friends, and so on. At some point more people knew about and were
using Ant than Tomcat. A strong developer and user community grew up around Ant at
Apache, and many changes have been made to the tool along the way. People now use it to
build all manner of projects, from very small ones to incredibly huge J2EE applications.

The moment I knew that Ant had gone into the history books was during JavaOne in 2001. I
was at a keynote presentation in which a new development tool from a major database
software company was being demoed. The presenter showed how easy it was to draw lines
between boxes to design software, and then hit the build button. Flashing by in the console

2 Also, the letters ANT could stand for "Another Neato Tool." Silly, I know. But true.



Ant: The Definitive Guide

window were those familiar square brackets that every user of Ant sees on a regular basis. |
was stunned. Floored.

The number of Ant users continues to increase. Evidently the little itch that I scratched is
shared by Java developers world wide. And not just Java developers. I recently stumbled
across NAnt, an implementation of Ant's ideas for NET development.’

If I had known that Ant was going to be such a runaway success, I would have spent a bit
more time on it in the first place polishing it up and making it something more than the simple
hack it started out as. Yet that might have defeated exactly the characteristic that made it take
off in the first place. Ant might have become over-engineered. If I had spent too much time
trying to make it work for more than just my needs, it might have become too big a tool and
too cumbersome to use. We see this all the time in software, especially in many of the Java
APIs currently being proposed.

It might be that the secret to Ant's success is that it didn't try to be successful. It was a simple
solution to an obvious problem that many people were having. I just feel honored to be the
lucky guy who stumbled across it.

The book you now hold in your hands will guide you in using Ant as it exists today. Jesse and
Eric will teach you how to use Ant effectively, extend it, and tell you how all the various
tasks, both the built-in ones as well as widely used optional ones, can be used. In addition,
they will give you tips to avoid the pitfalls created by some of Ant's design decisions.

Before placing you in their capable hands, I want to leave you with just one last thought:
always scratch your own itch where possible. If a tool out there doesnt do what you need it to
do, then look around for one that will. If it doesnt exist, then create it. And be sure to share it
with the world. Thousands of other people might have just the same itch that you do.

—James Duncan Davidson

San Francisco, CA, April 2002

3 You can find NAnt at http://nant.sourceforge.net/.



	Cover
	Table of Contents
	Dedication
	Foreword
	Preface
	Structure of This Book
	Audience
	What You Should Know
	Which Platform and Version
	Conventions Used in This book
	Comments and Questions
	Acknowledgments

	1. Ant Jumpstart
	1.1 Files and Directories
	1.2 The Ant Buildfile
	1.3 Running Ant
	1.4 Ant Command-Line Reference
	1.5 Buildfile Outline
	1.6 Learning More

	2. Installation and Configuration
	2.1 The Distribution
	2.2 Installation
	2.3 Configuration

	3. The Buildfile
	3.1 Why XML?
	3.2 Ant Building Blocks
	3.3 An Example Project and Buildfile
	3.4 The Buildfile Execution Process
	3.5 AINASL: Ant Is Not a Scripting Language
	3.6 Buildfile Authoring Issues

	4. Ant DataTypes
	4.1 DataTypes Defined
	4.2 XML Attribute Conventions
	4.3 Argument DataType
	4.4 Environment DataType
	4.5 FileList DataType
	4.6 FileSet DataType
	4.7 PatternSet DataType
	4.8 FilterSet DataType
	4.9 Path DataType
	4.10 Mapper DataType

	5. User-Written Tasks
	5.1 The Need for Custom Tasks
	5.2 Ant's Task Model
	5.3 The Task Life Cycle
	5.4 An Example Through Analysis: The jar Task
	5.5 Miscellaneous Task Topics

	6. User-Written Listeners
	6.1 The BuildEvent Class
	6.2 The BuildListener Interface
	6.3 An Example: XmlLogger
	6.4 The Parallel Problem

	7. Core Tasks
	7.1 Task Summary
	7.2 Common Types and Attributes
	7.3 Project and Target
	7.4 Core Task Reference

	8. Optional Tasks
	8.1 Task Summary
	8.2 Optional Task Reference

	A. The Future of Ant
	A.1 Ant2
	A.2 Ant1 RIP 2002?

	B. Ant Solutions
	B.1 Testing Library Availability
	B.2 Cleaning Up Does More Than Keep Things Neat
	B.3 Using Ant to Consolidate Libraries
	B.4 Documenting the Buildfile's Targets
	B.5 Setting Properties Outside of the Buildfile
	B.6 Using pathconvert
	B.7 Usage Statements
	B.8 Forking Processes
	B.9 Using Cascading Projects and Buildfiles

	Colophon



