

'Code for Initializing objects and variables

 End Sub

'Other class members

End Class

You can call a constructor only from within the constructor of either the same class or a
derived class. In derived classes, the first line in the constructor calls the constructor of
the base class to initialize the inherited objects. After calling the constructor of the base
class, you can add code to initialize the objects and variables created in the derived
class.

In Visual Basic.NET, constructors can also take arguments. In other words, you can
create parameterized constructors in Visual Basic.NET. Consider the following example:

Public Sub New(Optional ByVal iempcode As Integer = 0)
The preceding example defines a parameterized constructor for the Employee class.
The constructor accepts the employee code, a unique identification number assigned to
each employee, as an argument. Therefore, each time you create an object of the
Employee class, you can assign a unique identification number to the employee. If you
do not provide an identification number to the employee when creating the employee
object, a default value of 0 is assigned.
You can use either of the following statements to create an object of the Employee
class:

Dim Emp1 As New Employee(1001)

or

Dim Emp2 As Employee = New Employee(1001)

Constructors are optional procedures. You can also create classes without constructors.
However, it is recommended that you initialize objects created in a class by using a
constructor.

Now that you know how to create constructors in Visual Basic.NET, you will take a look
at how to declare destructors in Visual Basic.NET.

Destructors
Visual Basic.NET also provides the Sub Finalize procedure, which acts as a
destructor. The function of a destructor is opposite that of a constructor. A destructor
releases the memory and resources used by a destroyed object. The Sub Finalize
procedure is a protected method of the Object class. You can override the Sub
Finalize procedure in the classes you create. Take a look at the following example:

Protected Overrides Sub Finalize()

 MyBase.Finalize()

'Add code here

End Sub
In the preceding example, notice that the Overrides keyword is used. This is because
the Sub Finalize procedure is a method of the Object class. In addition, the MyBase
keyword is used to access the Sub Finalize method of the Object class.
Although you might override the Sub Finalize procedure in your application, the Sub
Finalize procedure is not called when your application is executed. This is because
the .NET framework controls the execution of the Sub Finalize procedure. The .NET
framework calls the Sub Finalize procedure when an object is destroyed to release

