1 Introduction

In 1972 and 1974, the National Bureau of Standards
(now the National Institute of Standards and Tech-
nology, or NIST) issued the first public request for an
encryption standard. The result was DES [NBS77],
arguably the most widely used and successful en-
cryption algorithm in the world.

Despite its popularity, DES has been plagued with
controversy. Some cryptographers objected to the
“closed-door” design process of the algorithm. The
debate about whether DES’ key is too short for ac-
ceptable commercial security has raged for many
years [DHT79], but recent advances in distributed key
search techniques have left no doubt in anyone’s
mind that its key is simply too short for today’s
security applications [Wie94, BDR+96]. Triple-
DES has emerged as an interim solution in many
high-security applications, such as banking, but it
is too slow for some uses. More fundamentally,
the 64-bit block length shared by DES and most
other well-known ciphers opens it up to attacks
when large amounts of data are encrypted under the
same key.

In response to a growing desire to replace DES,
NIST announced the Advanced Encryption Stan-
dard (AES) program in 1997 [NIST97a]. NIST so-
licited comments from the public on the proposed
standard, and eventually issued a call for algorithms
to satisfy the standard [NIST97b]. The intention is
for NIST to make all submissions public and even-
tually, through a process of public review and com-
ment, choose a new encryption standard to replace
DES.

NIST’s call requested a block cipher. Block ciphers
can be used to design stream ciphers with a variety of
synchronization and error extension properties, one-
way hash functions, message authentication codes,
and pseudo-random number generators. Because of
this flexibility, they are the workhorse of modern
cryptography.

NIST specified several other design criteria: a longer
key length, larger block size, faster speed, and
greater flexibility. While no single algorithm can
be optimized for all needs, NIST intends AES to be-
come the standard symmetric algorithm of the next
decade.

Twofish is our submission to the AES selection pro-
cess. It meets all the required NIST criteria—128-
bit block; 128-, 192-, and 256-bit key; efficient on
various platforms; etc.—and some strenuous design
requirements, performance as well as cryptographic,
of our own.

Twofish can:

e Encrypt data at 285 clock cycles per block on
a Pentium Pro, after a 12700 clock-cycle key
setup.

e Encrypt data at 860 clock cycles per block on
a Pentium Pro, after a 1250 clock-cycle key
setup.

e Encrypt data at 26500 clock cycles per block
on a 6805 smart card, after a 1750 clock-cycle
key setup.

This paper is organized as follows: Section 2 dis-
cusses our design goals for Twofish. Section 3 de-
scribes the building blocks and general design of the
cipher. Section 4 defines the cipher. Section 5 dis-
cusses the performance of Twofish. Section 6 talks
about the design philosophy that we used. In Sec-
tion 7 we describe the design process, and why the
various choices were made. Section 8 contains our
best cryptanalysis of Twofish. In Section 9 we dis-
cuss the possibility of trapdoors in the cipher. Sec-
tion 10 compares Twofish with some other ciphers.
Section 11 discusses various modes of using Twofish,
including a family-key variant. Section 12 contains
historical remarks, and Section 13 our conclusions
and directions for future analysis.

2 Twofish Design Goals

Twofish was designed to meet NIST’s design criteria
for AES [NIST97b]. Specifically, they are:

e A 128-bit symmetric block cipher.
e Key lengths of 128 bits, 192 bits, and 256 bits.
e No weak keys.

¢ Efficiency, both on the Intel Pentium Pro and
other software and hardware platforms.

e Flexible design: e.g., accept additional key
lengths; be implementable on a wide variety
of platforms and applications; and be suitable
for a stream cipher, hash function, and MAC.

e Simple design, both to facilitate ease of analy-
sis and ease of implementation.

Additionally, we imposed the following performance
criteria on our design:

e Accept any key length up to 256 bits.



e Encrypt data in less than 500 clock cycles per
block on an Intel Pentium, Pentium Pro, and
Pentium II, for a fully optimized version of the
algorithm.

e Be capable of setting up a 128-bit key (for op-
timal encryption speed) in less than the time
required to encrypt 32 blocks on a Pentium,
Pentium Pro, and Pentium II.

e Encrypt data in less than 5000 clock cycles per
block on a Pentium, Pentium Pro, and Pen-
tium II with no key setup time.

e Not contain any operations that make it inef-
ficient on other 32-bit microprocessors.

e Not contain any operations that make it inef-
ficient on 8-bit and 16-bit microprocessors.

e Not contain any operations that reduce its ef-
ficiency on proposed 64-bit microprocessors;
e.g., Merced.

e Not include any elements that make it ineffi-
cient in hardware.

e Have a variety of performance tradeoffs with
respect to the key schedule.

e Encrypt data in less than less than 10 millisec-
onds on a commodity 8-bit microprocessor.

e Be implementable on a 8-bit microprocessor
with only 64 bytes of RAM.

e Be implementable in hardware using less than
20,000 gates.

Our cryptographic goals were as follows:

e 16-round Twofish (without whitening) should
have no chosen-plaintext attack requiring
fewer than 289 chosen plaintexts and less than
2N time, where N is the key length.

e 12-round Twofish (without whitening) should
have no related-key attack requiring fewer
than 264 chosen plaintexts, and less than 2V/2
time, where N is the key length.

Finally, we imposed the following flexibility goals:

e Have variants with a variable number of
rounds.

e Have a key schedule that can be precomputed
for maximum speed, or computed on-the-fly
for maximum agility and minimum memory
requirements. Additionally, it should be suit-
able for dedicated hardware applications: e.g.,
no large tables.

e Be suitable as a stream cipher, one-way hash
function, MAC, and pseudo-random number
generator, using well-understood construction
methods.

e Have a family-key variant to allow for differ-
ent, non-interoperable, versions of the cipher.

We feel we have met all of these goals in the design
of Twofish.

3 Twofish Building Blocks

3.1 Feistel Networks

A Feistel network is a general method of transform-
ing any function (usually called the F' function) into
a permutation. It was invented by Horst Feistel
[FNS75] in his design of Lucifer [Fei73], and popular-
ized by DES [NBS77]. It is the basis of most block ci-
phers published since then, including FEAL [SM8§],
GOST [GOST89], Khufu and Khafre [Mer91], LOKI
[BPS90, BKPS93], CAST-128 [Ada97a], Blowfish
[Sch94], and RC5 [Riv95].

The fundamental building block of a Feistel network
is the F' function: a key-dependent mapping of an
input string onto an output string. An F' function
is always non-linear and possibly non-surjective!:

F:{0,1}"2 x {0,1}V — {0,1}"/2

where n is the block size of the Feistel Network, and
F is a function taking n/2 bits of the block and N
bits of a key as input, and producing an output of
length n/2 bits. In each round, the “source block”
is the input to F', and the output of F' is XORed with
the “target block,” after which these two blocks swap
places for the next round. The idea here is to take
an F' function, which may be a weak encryption al-
gorithm when taken by itself, and repeatedly iterate
it to create a strong encryption algorithm.

Two rounds of a Feistel network is called a “cycle”
[SK96]. In one cycle, every bit of the text block has
been modified once.?

LA non-surjective F' function is one in which not all outputs in the output space can occur.

2The notion of a cycle allows Feistel networks to be compared with unbalanced Feistel networks [SK96, ZMI90] such as
MacGuffin [BS95] (cryptanalyzed in [RP95a]) and Bear/Lion [AB96b], and with SP-networks (also called uniform transforma-
tion structures [Fei73]) such as IDEA, SAFER, and Shark [RDP+96] (see also [YTH96]). Thus, 8-cycle (8-round) IDEA is
comparable to 8-cycle (16-round) DES and 8-cycle (32-round) Skipjack.



Twofish is a 16-round Feistel network with a bijec-
tive F' function.

3.2 S-boxes

An S-box is a table-driven non-linear substitution
operation used in most block ciphers. S-boxes vary
in both input size and output size, and can be cre-
ated either randomly or algorithmically. S-boxes
were first used in Lucifer, then DES, and afterwards
in most encryption algorithms.

Twofish uses four different, bijective, key-dependent,
8-by-8-bit S-boxes. These S-boxes are built using
two fixed 8-by-8-bit permutations and key material.

3.3 MDS Matrices

A maximum distance separable (MDS) code over a
field is a linear mapping from q field elements to b
field elements, producing a composite vector of a +b
elements, with the property that the minimum num-
ber of non-zero elements in any non-zero vector is at
least b+ 1 [MS77]. Put another way, the “distance”
(i.e., the number of elements that differ) between
any two distinct vectors produced by the MDS map-
ping is at least b + 1. It can easily be shown that
no mapping can have a larger minimum distance be-
tween two distinct vectors, hence the term maximum
distance separable. MDS mappings can be repre-
sented by an MDS matrix consisting of a x b ele-
ments. Reed-Solomon (RS) error-correcting codes
are known to be MDS. A necessary and sufficient
condition for an a x b matrix to be MDS is that all
possible square submatrices, obtained by discarding
rows or columns, are non-singular.

Serge Vaudenay first proposed MDS matrices as a
cipher design element [Vau95]. Shark [RDP+96]
and Square [DKR97] use MDS matrices (see also
[YMT97]), although we first saw the construction
used in the unpublished cipher Manta® [Fer96].
Twofish uses a single 4-by-4 MDS matrix over
GF(2%).

3.4 Pseudo-Hadamard Transforms

A pseudo-Hadamard transform (PHT) is a sim-
ple mixing operation that runs quickly in software.
Given two inputs, a and b, the 32-bit PHT is defined
as:

a = a4+ bmod 2%

b = a+2bmod 2%

SAFER [Mas94] uses 8-bit PHTs extensively for dif-
fusion. Twofish uses a 32-bit PHT to mix the out-
puts from its two parallel 32-bit g functions. This
PHT can be executed in two opcodes on most mod-
ern microprocessors, including the Pentium family.

3.5 Whitening

Whitening, the technique of XORing key material be-
fore the first round and after the last round, was used
by Merkle in Khufu/Khafre, and independently in-
vented by Rivest for DES-X [KR96]. In [KR96], it
was shown that whitening substantially increases the
difficulty of keysearch attacks against the remain-
der of the cipher. In our attacks on reduced-round
Twofish variants, we discovered that whitening sub-
stantially increased the difficulty of attacking the ci-
pher, by hiding from an attacker the specific inputs
to the first and last rounds’ F' functions.

Twofish XORs 128 bits of subkey before the first Feis-
tel round, and another 128 bits after the last Feistel
round. These subkeys are calculated in the same
manner as the round subkeys, but are not used any-
where else in the cipher.

3.6 Key Schedule

The key schedule is the means by which the key bits
are turned into round keys that the cipher can use.
Twofish needs a lot of key material, and has a com-
plicated key schedule. To facilitate analysis, the key
schedule uses the same primitives as the round func-
tion.

4 Twofish

Figure 1 shows an overview of the Twofish block ci-
pher. Twofish uses a 16-round Feistel-like structure
with additional whitening of the input and output.
The only non-Feistel elements are the 1-bit rotates.
The rotations can be moved into the F' function to
create a pure Feistel structure, but this requires an
additional rotation of the words just before the out-
put whitening step.

The plaintext is split into four 32-bit words. In the
input whitening step, these are XxORed with four key
words. This is followed by sixteen rounds. In each

3Manta is a block cipher with a large block size and an emphasis on long-term security rather than speed. It uses an SP-like
network with DES as the S-boxes and MDS matrices for the permutations.





