
Programming C#, 2nd Edition 

1 

Preface 
Every 10 years or so a new approach to programming hits like a tsunami. In the early 1980s, 
the new technologies were Unix, which could be run on a desktop, and a powerful new 
language called C, developed by AT&T. The early 90s brought Windows and C++. Each of 
these developments represented a sea change in the way you approached programming. Now, 
.NET and C# are the next wave, and this book is intended to help you ride it.  

Microsoft has 'bet the company' on .NET. When a company of their size and influence spends 
billions of dollars and reorganizes its entire corporate structure to support a new platform, it is 
reasonable for programmers to take notice. It turns out that .NET represents a major change in 
the way you'll think about programming. It is, in short, a new development platform designed 
to facilitate object-oriented Internet development. The programming language of choice for 
this object-oriented Internet-centric platform is C#, which builds on the lessons learned from 
C (high performance), C++ (object-oriented structure), Java (garbage collected, high 
security), and Visual Basic (rapid development) to create a new language ideally suited for 
developing component-based n-tier distributed web applications.  

About This Book 

This book is a tutorial, both on C# and on writing .NET applications with C#. If you are 
already proficient in a programming language, you may be able to skim a number of the early 
chapters, but be sure to read through Chapter 1, which provides an overview of the language 
and the .NET platform. If you are new to programming, you'll want to read the book as the 
King of Hearts instructed the White Rabbit: "Begin at the beginning, and go on till you come 
to the end: then stop.1  

How the Book Is Organized 

Part I focuses on the details of the language. Part II details how to write .NET programs, and 
Part III describes how to use C# with the .NET Common Language Runtime library.  

Part I, The C# Language 

Chapter 1, introduces you to the C# language and the .NET platform.  

Chapter 2 demonstrates a simple program to provide a context for what follows, and 
introduces you to the Visual Studio IDE and a number of C# language concepts.  

Chapter 3, presents the basics of the language, from built-in datatypes to keywords.  

Classes define new types and allow the programmer to extend the language so that you can 
better model the problem you're trying to solve. Chapter 4, explains the components that form 
the heart and soul of C#.  

Classes can be complex representations and abstractions of things in the real world. 
Chapter 5, discusses how classes relate and interact.  

                                                 
1 Alice's Adventures in Wonderland by Lewis Carroll. 



Programming C#, 2nd Edition 

2 

Chapter 6, teaches you how to add operators to your user-defined types.  

Chapter 7 and Chapter 8 introduce Structs and Interfaces, respectively, both close cousins to 
classes. Structs are lightweight objects that are more restricted than classes, and that make 
fewer demands on the operating system and on memory. Interfaces are contracts; they 
describe how a class will work so that other programmers can interact with your objects in 
well-defined ways.  

Object-oriented programs often create a great many objects. It is often convenient to group 
these objects and manipulate them together, and C# provides extensive support for 
collections. Chapter 9, explores the collection classes provided by the Framework Class 
Library and how to create your own collection types as well.  

Chapter 10 discusses how you can use C# to manipulate text Strings and Regular 
Expressions. Most Windows and web programs interact with the user, and strings play a vital 
role in the user interface.  

Chapter 11, explains how to deal with exceptions, which provide an object-oriented 
mechanism for handling life's little emergencies.  

Both Windows and web applications are event-driven. In C#, events are first-class members 
of the language. Chapter 12, focuses on how events are managed, and how delegates (object-
oriented type-safe callback mechanisms) are used to support event handling.  

Part II, Programming with C# 

This section and the next will be of interest to all readers, no matter how much experience you 
may already have with other programming languages. These sections explore the details of 
the .NET platform.  

Part II details how to write .NET programs: both desktop applications with Windows Forms 
and web applications with Web Forms. In addition, Part II describes database interactivity and 
how to create web services.  

On top of this infrastructure sits a high-level abstraction of the operating system, designed to 
facilitate object-oriented software development. This top tier includes ASP.NET and 
Windows Forms. ASP.NET includes both Web Forms, for rapid development of web 
applications, and web services, for creating web objects with no user interface.  

C# provides a Rapid Application Development (RAD) model similar to that previously 
available only in Visual Basic. Chapter 13, describes how to use this RAD model to create 
professional-quality Windows programs using the Windows Forms development 
environment.  

Whether intended for the Web or for the desktop, most applications depend on the 
manipulation and management of large amounts of data. Chapter 14, explains the ADO.NET 
layer of the .NET Framework and explains how to interact with Microsoft SQL Server and 
other data providers.  



Programming C#, 2nd Edition 

3 

Chapter 15 combines the RAD techniques demonstrated in Chapter 13 with the data 
techniques from Chapter 14 to demonstrate Building Web Applications with Web Forms.  

Not all applications have a user interface. Chapter 16 focuses on the second half of ASP.NET 
technology: Web Services. A web service is a distributed application that provides 
functionality via standard web protocols, most commonly XML and HTTP.  

Part III, The CLR and the .NET Framework 

A runtime is an environment in which programs are executed. The Common Language 
Runtime (CLR) is the heart of .NET. It includes a data-typing system which is enforced 
throughout the platform and which is common to all languages developed for .NET. The CLR 
is responsible for processes such as memory management and reference counting of objects.  

Another key feature of the .NET CLR is garbage collection. Unlike with traditional C/C++ 
programming, in C# the developer is not responsible for destroying objects. Endless hours 
spent searching for memory leaks are a thing of the past; the CLR cleans up after you when 
your objects are no longer in use. The CLR's garbage collector checks the heap for 
unreferenced objects and frees the memory used by these objects.  

The .NET platform and class library extends upward into the middle-level platform, where 
you find an infrastructure of supporting classes, including types for interprocess 
communication, XML, threading, I/O, security, diagnostics, and so on. The middle tier also 
includes the data-access components collectively referred to as ADO.NET, which are 
discussed in Chapter 14.  

Part III of this book discusses the relationship of C# to the Common Language Runtime and 
the Framework Class Library.  

Chapter 17, distinguishes between private and public assemblies and describes how 
assemblies are created and managed. In .NET, an assembly is a collection of files that appears 
to the user to be a single DLL or executable. An assembly is the basic unit of reuse, 
versioning, security, and deployment.  

.NET assemblies include extensive metadata about classes, methods, properties, events, and 
so forth. This metadata is compiled into the program and retrieved programmatically through 
reflection. Chapter 18, explores how to add metadata to your code, how to create custom 
attributes, and how to access this metadata through reflection. It goes on to discuss dynamic 
invocation, in which methods are invoked with late (runtime) binding, and ends with a 
demonstration of reflection emit, an advanced technique for building self-modifying code.  

The .NET Framework was designed to support web-based and distributed applications. 
Components created in C# may reside within other processes on the same machine or on other 
machines across the network or across the Internet. Marshaling is the technique of interacting 
with objects that aren't really there, while remoting comprises techniques for communicating 
with such objects. Chapter 19, elaborates.  

The Framework Class Library provides extensive support for asynchronous I/O and other 
classes that make explicit manipulation of threads unnecessary. However, C# does provide 
extensive support for Threads and Synchronization, discussed in Chapter 20.  



Programming C#, 2nd Edition 

4 

Chapter 21 discusses Streams, a mechanism not only for interacting with the user but also for 
retrieving data across the Internet. This chapter includes full coverage of C# support for 
serialization: the ability to write an object graph to disk and read it back again.  

Chapter 22, explores interoperability -- the ability to interact with COM components created 
outside the managed environment of the .NET Framework. It is possible to call components 
from C# applications into COM and to call components from COM into C#. Chapter 22 
describes how this is done.  

The book concludes with an appendix of Glossary.  

Who This Book Is For 

Programming C#, Second Edition was written for programmers who want to develop 
applications for the .NET platform. No doubt, many of you already have experience in C++, 
Java, or Visual Basic (VB). Other readers may have experience with other programming 
languages, and some readers may have no specific programming experience but perhaps have 
been working with HTML and other web technologies. This book is written for all of you, 
though if you have no programming experience at all, you may find some of it tough going.  

C# Versus Visual Basic .NET 

The premise of the .NET Framework is that all languages are created equal. To paraphrase 
George Orwell, however, some languages are more equal than others. C# is an excellent 
language for .NET development. You will find it is an extremely versatile, robust and well-
designed language. It is also currently the language most often used in articles and tutorials 
about .NET programming.  

It is likely that many VB programmers will choose to learn C#, rather than upgrading their 
skills to VB.NET. This would not be surprising because the transition from VB6 to VB.NET 
is, arguably, nearly as difficult as from VB6 to C# -- and, whether it's fair or not, historically, 
C-family programmers have had higher earning potential than VB programmers. As a 
practical matter, VB programmers have never gotten the respect or compensation they 
deserve, and C# offers a wonderful chance to make a potentially lucrative transition.  

In any case, if you do have VB experience, welcome! This book was designed with you in 
mind too, and I've tried to make the conversion easy.  

C# Versus Java 

Java Programmers may look at C# with a mixture of trepidation, glee, and resentment. It has 
been suggested that C# is somehow a "rip-off" of Java. I won't comment on the religious war 
between Microsoft and the "anyone but Microsoft" crowd except to acknowledge that C# 
certainly learned a great deal from Java. But then Java learned a great deal from C++, which 
owed its syntax to C, which in turn was built on lessons learned in other languages. We all 
stand on the shoulders of giants.  

C# offers an easy transition for Java programmers; the syntax is very similar and the 
semantics are familiar and comfortable. Java programmers will probably want to focus on the 
differences between Java and C# in order to use the C# language effectively. I've tried to 



Programming C#, 2nd Edition 

5 

provide a series of markers along the way (see the notes to Java programmers within the 
chapters).  

C# Versus C++ 

While it is possible to program in .NET with C++, it isn't easy or natural. Frankly, having 
worked for ten years as a C++ programmer and written a dozen books on the subject, I'd 
rather have my teeth drilled than work with managed C++. Perhaps it is just that C# is so 
much friendlier. In any case, once I saw C#, I never looked back.  

Be careful, though; there are a number of small traps along the way, and I've been careful to 
mark these with flashing lights and yellow cones. You'll find notes for C++ programmers 
throughout the book.  

Conventions Used in This Book 

The following font conventions are used in this book: 

Italic is used for:  

• Pathnames, filenames, and program names. 
• Internet addresses, such as domain names and URLs. 
• New terms where they are defined. 

Constant Width is used for:  

• Command lines and options that should be typed verbatim. 
• Names and keywords in program examples, including method names, variable names, 

and class names.  

Constant Width Italic is used for replaceable items, such as variables or optional 
elements, within syntax lines or code.  

Constant Width Bold is used for emphasis within program code.  

Pay special attention to notes set apart from the text with the following icons:  

 

This is a tip. It contains useful supplementary information about the 
topic at hand.  

 

 
This is a warning. It helps you solve and avoid annoying problems. 

 

Support 

As part of my responsibilities as author, I provide ongoing support for my books through my 
web site:  



Programming C#, 2nd Edition 

6 

http://www.LibertyAssociates.com  

You can also obtain the source code for all of the examples in Programming C# at my site 
You will find access to a book-support discussion group with a section set aside for questions 
about C#. Before you post a question, however, please check the FAQ (Frequently Asked 
Questions) and the errata file. If you check these files and still have a question, then please go 
ahead and post to the discussion center.  

The most effective way to get help is to ask a very precise question or even to create a very 
small program that illustrates your area of concern or confusion. You may also want to check 
the various newsgroups and discussion centers on the Internet. Microsoft offers a wide array 
of newsgroups, and Developmentor (http://www.develop.com/) has a wonderful .NET email 
discussion list, as does Charles Carroll at http://www.asplists.com/.  

We'd Like to Hear from You 

We have tested and verified the information in this book to the best of our ability, but you 
may find that features have changed (or even that we have made mistakes!). Please let us 
know about any errors you find, as well as your suggestions for future editions, by writing to:  

O'Reilly & Associates, Inc.  
005 Gravenstein Highway North  
Sebastopol, CA 95472  
(800) 998-9938 (in the United States or Canada)  
(707) 829-0515 (international or local)  
(707) 829-0104 (fax)  

We have a web page for the book, where we list examples and any plans for future editions. 
You can access this information at:  

http://www.oreilly.com/catalog/progcsharp2  

To comment or ask technical questions about this book, send email to: 

bookquestions@oreilly.com  

For more information about our books, conferences, Resource Centers, and the O'Reilly 
Network, see our web site at:  

http://www.oreilly.com/  

For more information about this book and others, as well as additional technical articles and 
discussion on the C# and the .NET Framework, see the O'Reilly & Associates web site:  

http://www.oreilly.com/  

and the O'Reilly .NET DevCenter: 

http://www.oreillynet.com/dotnet/  



Programming C#, 2nd Edition 

7 

Acknowledgments 

To ensure that Programming C# is accurate, complete and targeted at the needs and interests 
of professional programmers, I enlisted the help of some of the brightest programmers I 
know, including Donald Xie, Dan Hurwitz, Seth Weiss, Sue Lynch, Cliff Gerald, and Tom 
Petr. Jim Culbert not only reviewed the book and made extensive suggestions, but continually 
pointed me back at the practical needs of working programmers. Jim's contributions to this 
book cannot be overstated.  

Mike Woodring of Developmentor taught me more about the CLR in a week than I could 
have learned on my own in six months. A number of folks at Microsoft and O'Reilly helped 
me wrestle with the twin beasts of C# and .NET, including (but not limited to) Eric 
Gunnerson, Rob Howard, Piet Obermeyer, Jonathan Hawkins, Peter Drayton, Brad Merrill, 
and Ben Albahari. Susan Warren may be one of the most amazing programmers I've ever met; 
her help and guidance is deeply appreciated.  

John Osborn signed me to O'Reilly, for which I will forever be in his debt. Valerie Quercia, 
Brian McDonald, Jeff Holcomb, Claire Cloutier, and Tatiana Diaz helped make this book 
better than what I'd written. Rob Romano created a number of the illustrations and improved 
the others. Tim O'Reilly provided support and resources, and I'm grateful.  

Many readers have written to point out typos and minor errors in the first edition. Their effort 
is very much appreciated, with special thanks to Sol Bick, Brian Cassel, Steve Charbonneau, 
Randy Eastwood, Andy Gaskall, Bob Kline, Jason Mauss, Mark Phillips, Christian 
Rodriguez, David Solum, Erwing Steininger, Steve Thomson, Greg Torrance, and Ted Volk. 
We've worked hard to fix all of these errors in this second edition. We've scoured the book to 
ensure that no new errors were added, and that all of the code compiles and runs properly with 
the latest release edition of Visual Studio .NET. That said, if you do find errors, please check 
the errata on my web site (http://www.libertyassociates.com/) and if your error is new, please 
send me email at jliberty@libertyassociates.com.  

Finally, a special thank you to Brian Jepson, who is responsible both for the enhanced quality 
of the second edition and for its timeliness. He has gone above and beyond in this effort and I 
very much appreciate it.  


	Cover
	Table of Contents
	Preface
	About This Book
	How the Book Is Organized
	Who This Book Is For
	C# Versus Visual Basic .NET
	C# Versus Java
	C# Versus C++
	Conventions Used in This Book
	Support
	We'd Like to Hear from You
	Acknowledgments

	I: The C# Language
	1. C# and the .NET Framework
	1.1 The .NET Platform
	1.2 The .NET Framework
	1.3 Compilation and the MSIL
	1.4 The C# Language

	2. Getting Started: "Hello World"
	2.1 Classes, Objects, and Types
	2.2 Developing "Hello World"
	2.3 Using the Visual Studio .NET Debugger

	3. C# Language Fundamentals
	3.1 Types
	3.2 Variables and Constants
	3.3 Expressions
	3.4 Whitespace
	3.5 Statements
	3.6 Operators
	3.7 Namespaces
	3.8 Preprocessor Directives

	4. Classes and Objects
	4.1 Defining Classes
	4.2 Creating Objects
	4.3 Using Static Members
	4.4 Destroying Objects
	4.5 Passing Parameters
	4.6 Overloading Methods and Constructors
	4.7 Encapsulating Data with Properties
	4.8 Readonly Fields

	5. Inheritance and Polymorphism
	5.1 Specialization and Generalization
	5.2 Inheritance
	5.3 Polymorphism
	5.4 Abstract Classes
	5.5 The Root of all Classes: Object
	5.6 Boxing and Unboxing Types
	5.7 Nesting Classes

	6. Operator Overloading
	6.1 Using the operator Keyword
	6.2 Supporting Other .NET Languages
	6.3 Creating Useful Operators
	6.4 Logical Pairs
	6.5 The Equals Operator
	6.6 Conversion Operators

	7. Structs
	7.1 Defining Structs
	7.2 Creating Structs

	8. Interfaces
	8.1 Implementing an Interface
	8.2 Accessing Interface Methods
	8.3 Overriding Interface Implementations
	8.4 Explicit Interface Implementation

	9. Arrays, Indexers, and Collections
	9.1 Arrays
	9.2 The foreach Statement
	9.3 Indexers
	9.4 Collection Interfaces
	9.5 Array Lists
	9.6 Queues
	9.7 Stacks
	9.8 Dictionaries

	10. Strings and Regular Expressions
	10.1 Strings
	10.2 Regular Expressions

	11. Handling Exceptions
	11.1 Throwing and Catching Exceptions
	11.2 Exception Objects
	11.3 Custom Exceptions
	11.4 Rethrowing Exceptions

	12. Delegates and Events
	12.1 Delegates
	12.2 Events


	II: Programming with C#
	13. Building Windows Applications
	13.1 Creating a Simple Windows Form
	13.2 Creating a Windows Form Application
	13.3 XML Documentation Comments
	13.4 Deploying an Application

	14. Accessing Data with ADO.NET
	14.1 Relational Databases and SQL
	14.2 The ADO.NET Object Model
	14.3 Getting Started with ADO.NET
	14.4 Using OLE DB Managed Providers
	14.5 Working with Data-Bound Controls
	14.6 Changing Database Records
	14.7 ADO.NET and XML

	15. Programming Web Applicationswith Web Forms
	15.1 Understanding Web Forms
	15.2 Creating a Web Form
	15.3 Adding Controls
	15.4 Data Binding
	15.5 Responding to Postback Events
	15.6 ASP.NET and C#

	16. Programming Web Services
	16.1 SOAP, WSDL, and Discovery
	16.2 Building a Web Service
	16.3 Creating the Proxy


	III: Introduction to Web Services
	17. Assemblies and Versioning
	17.1 PE Files
	17.2 Metadata
	17.3 Security Boundary
	17.4 Versioning
	17.5 Manifests
	17.6 Multi-Module Assemblies
	17.7 Private Assemblies
	17.8 Shared Assemblies

	18. Attributes and Reflection
	18.1 Attributes
	18.2 Intrinsic Attributes
	18.3 Custom Attributes
	18.4 Reflection
	18.5 Reflection Emit

	19. Marshaling and Remoting
	19.1 Application Domains
	19.2 Context
	19.3 Remoting

	20. Threads and Synchronization
	20.1 Threads
	20.2 Synchronization
	20.3 Race Conditions and Deadlocks

	21. Streams
	21.1 Files and Directories
	21.2 Reading and Writing Data
	21.3 Asynchronous I/O
	21.4 Network I/O
	21.5 Web Streams
	21.6 Serialization
	21.7 Isolated Storage

	22. Programming .NET and COM
	22.1 Importing ActiveX Controls
	22.2 Importing COM Components
	22.3 Exporting .NET Components
	22.4 P/Invoke
	22.5 Pointers


	Glossary
	Colophon



