
Preface

The first programming language I ever learned was ALGOL60. This language was
notable for its elegance and its regularity; for all its imperfections, it stood head and
shoulders above its contemporaries. My interest in languages was awakened, and
I began to perceive the benefits of simplicity and consistency in language design.

Since then I have learned and programmed in about a dozen other languages,
and I have struck a nodding acquaintance with many more. Like many pro-
grammers, I have found that certain languages make programming distasteful, a
drudgery; others make programming enjoyable, even esthetically pleasing. A good
language, like a good mathematical notation, helps us to formulate and communi-
cate ideas clearly. My personal favorites have been PASCAL, ADA, ML, and JAVA.
Each of these languages has sharpened my understanding of what programming
is (or should be) all about. PASCAL taught me structured programming and data
types. ADA taught me data abstraction, exception handling, and large-scale pro-
gramming. ML taught me functional programming and parametric polymorphism.
JAVA taught me object-oriented programming and inclusion polymorphism. I had
previously met all of these concepts, and understood them in principle, but I did
not truly understand them until I had the opportunity to program in languages
that exposed them clearly.

Contents

This book consists of five parts.
Chapter 1 introduces the book with an overview of programming linguistics

(the study of programming languages) and a brief history of programming and
scripting languages.

Chapters 2–5 explain the basic concepts that underlie almost all programming
languages: values and types, variables and storage, bindings and scope, procedures
and parameters. The emphasis in these chapters is on identifying the basic
concepts and studying them individually. These basic concepts are found in almost
all languages.

Chapters 6–10 continue this theme by examining some more advanced con-
cepts: data abstraction (packages, abstract types, and classes), generic abstraction
(or templates), type systems (inclusion polymorphism, parametric polymor-
phism, overloading, and type conversions), sequencers (including exceptions), and
concurrency (primitives, conditional critical regions, monitors, and rendezvous).
These more advanced concepts are found in the more modern languages.

Chapters 11–16 survey the most important programming paradigms, compar-
ing and contrasting the long-established paradigm of imperative programming
with the increasingly important paradigms of object-oriented and concurrent pro-
gramming, the more specialized paradigms of functional and logic programming,
and the paradigm of scripting. These different paradigms are based on different

xv

xvi Preface

selections of key concepts, and give rise to sharply contrasting styles of language
and of programming. Each chapter identifies the key concepts of the subject
paradigm, and presents an overview of one or more major languages, showing
how concepts were selected and combined when the language was designed.
Several designs and implementations of a simple spellchecker are presented to
illustrate the pragmatics of programming in all of the major languages.

Chapters 17 and 18 conclude the book by looking at two issues: how to select
a suitable language for a software development project, and how to design a
new language.

The book need not be read sequentially. Chapters 1–5 should certainly be
read first, but the remaining chapters could be read in many different orders.
Chapters 11–15 are largely self-contained; my recommendation is to read at least
some of them after Chapters 1–5, in order to gain some insight into how major
languages have been designed. Figure P.1 summarizes the dependencies between
the chapters.

Examples and case studies

The concepts studied in Chapters 2–10 are freely illustrated by examples. These
examples are drawn primarily from C, C++, JAVA, and ADA. I have chosen these
languages because they are well known, they contrast well, and even their flaws
are instructive!

1
Introduction

2
Values and

Types

4
Bindings and

Scope

5
Procedural
Abstraction

6
Data

Abstraction

7
Generic

Abstraction

11
Imperative

Programming

12
OO

Programming

15
Logic

Programming

17
Language
Selection

18
Language

Design

3
Variables and

Storage

8
Type

Systems

14
Functional

Programming

9
Control
Flow

13
Concurrent

Programming

16
Scripting

10
Concurrency

Figure P.1 Dependencies between chapters of this book.

Preface xvii

The paradigms studied in Chapters 11–16 are illustrated by case studies of
major languages: ADA, C, C++, HASKELL, JAVA, PROLOG, and PYTHON. These
languages are studied only impressionistically. It would certainly be valuable for
readers to learn to program in all of these languages, in order to gain deeper insight,
but this book makes no attempt to teach programming per se. The bibliography
contains suggested reading on all of these languages.

Exercises

Each chapter is followed by a number of relevant exercises. These vary from
short exercises, through longer ones (marked *), up to truly demanding ones
(marked **) that could be treated as projects.

A typical exercise is to analyze some aspect of a favorite language, in the
same way that various languages are analyzed in the text. Exercises like this are
designed to deepen readers’ understanding of languages that they already know,
and to reinforce understanding of particular concepts by studying how they are
supported by different languages.

A typical project is to design some extension or modification to an existing
language. I should emphasize that language design should not be undertaken
lightly! These projects are aimed particularly at the most ambitious readers, but
all readers would benefit by at least thinking about the issues raised.

Readership

All programmers, not just language specialists, need a thorough understanding
of language concepts. This is because programming languages are our most
fundamental tools. They influence the very way we think about software design
and implementation, about algorithms and data structures.

This book is aimed at junior, senior, and graduate students of computer
science and information technology, all of whom need some understanding of
the fundamentals of programming languages. The book should also be of inter-
est to professional software engineers, especially project leaders responsible
for language evaluation and selection, designers and implementers of language
processors, and designers of new languages and of extensions to existing languages.

To derive maximum benefit from this book, the reader should be able to
program in at least two contrasting high-level languages. Language concepts can
best be understood by comparing how they are supported by different languages. A
reader who knows only a language like C, C++, or JAVA should learn a contrasting
language such as ADA (or vice versa) at the same time as studying this book.

The reader will also need to be comfortable with some elementary concepts
from discrete mathematics – sets, functions, relations, and predicate logic – as
these are used to explain a variety of language concepts. The relevant mathematical
concepts are briefly reviewed in Chapters 2 and 15, in order to keep this book
reasonably self-contained.

This book attempts to cover all the most important aspects of a large subject.
Where necessary, depth has been sacrificed for breadth. Thus the really serious

xviii Preface

student will need to follow up with more advanced studies. The book has an
extensive bibliography, and each chapter closes with suggestions for further
reading on the topics covered by the chapter.

Acknowledgments

Bob Tennent’s classic book Programming Language Principles has profoundly
influenced the way I have organized this book. Many books on programming
languages have tended to be syntax-oriented, examining several popular languages
feature by feature, without offering much insight into the underlying concepts
or how future languages might be designed. Some books are implementation-
oriented, attempting to explain concepts by showing how they are implemented
on computers. By contrast, Tennent’s book is semantics-oriented, first identifying
and explaining powerful and general semantic concepts, and only then analyzing
particular languages in terms of these concepts. In this book I have adopted Ten-
nent’s semantics-oriented approach, but placing far more emphasis on concepts
that have become more prominent in the intervening two decades.

I have also been strongly influenced, in many different ways, by the work
of Malcolm Atkinson, Peter Buneman, Luca Cardelli, Frank DeRemer, Edsger
Dijkstra, Tony Hoare, Jean Ichbiah, John Hughes, Mehdi Jazayeri, Bill Joy, Robin
Milner, Peter Mosses, Simon Peyton Jones, Phil Wadler, and Niklaus Wirth.

I wish to thank Bill Findlay for the two chapters (Chapters 10 and 13) he has
contributed to this book. His expertise on concurrent programming has made this
book broader in scope than I could have made it myself. His numerous suggestions
for my own chapters have been challenging and insightful.

Last but not least, I would like to thank the Wiley reviewers for their
constructive criticisms, and to acknowledge the assistance of the Wiley editorial
staff led by Gaynor Redvers-Mutton.

David A. Watt
Brisbane

March 2004

	Programming Language Design Concepts
	Cover

	Contents
	Preface
	Part I: Introduction
	1 Programming languages
	1.1 Programming linguistics
	1.1.1 Concepts and paradigms
	1.1.2 Syntax, semantics, and pragmatics
	1.1.3 Language processors

	1.2 Historical development
	Summary
	Further reading
	Exercises

	Part II: Basic Concepts
	2 Values and types
	2.1 Types
	2.2 Primitive types
	2.2.1 Built-in primitive types
	2.2.2 Defined primitive types
	2.2.3 Discrete primitive types

	2.3 Composite types
	2.3.1 Cartesian products, structures, and records
	2.3.2 Mappings, arrays, and functions
	2.3.3 Disjoint unions, discriminated records, and objects

	2.4 Recursive types
	2.4.1 Lists
	2.4.2 Strings
	2.4.3 Recursive types in general

	2.5 Type systems
	2.5.1 Static vs dynamic typing
	2.5.2 Type equivalence
	2.5.3 The Type Completeness Principle

	2.6 Expressions
	2.6.1 Literals
	2.6.2 Constructions
	2.6.3 Function calls
	2.6.4 Conditional expressions
	2.6.5 Iterative expressions
	2.6.6 Constant and variable accesses

	2.7 Implementation notes
	2.7.1 Representation of primitive types
	2.7.2 Representation of Cartesian products
	2.7.3 Representation of arrays
	2.7.4 Representation of disjoint unions
	2.7.5 Representation of recursive types

	Summary
	Further reading
	Exercises

	3 Variables and storage
	3.1 Variables and storage
	3.2 Simple variables
	3.3 Composite variables
	3.3.1 Total vs selective update
	3.3.2 Static vs dynamic vs flexible arrays

	3.4 Copy semantics vs reference semantics
	3.5 Lifetime
	3.5.1 Global and local variables
	3.5.2 Heap variables
	3.5.3 Persistent variables

	3.6 Pointers
	3.6.1 Pointers and recursive types
	3.6.2 Dangling pointers

	3.7 Commands
	3.7.1 Skips
	3.7.2 Assignments
	3.7.3 Proper procedure calls
	3.7.4 Sequential commands
	3.7.5 Collateral commands
	3.7.6 Conditional commands
	3.7.7 Iterative commands

	3.8 Expressions with side effects
	3.8.1 Command expressions
	3.8.2 Expression-oriented languages

	3.9 Implementation notes
	3.9.1 Storage for global and local variables
	3.9.2 Storage for heap variables
	3.9.3 Representation of dynamic and flexible arrays

	Summary
	Further reading
	Exercises

	4 Bindings and scope
	4.1 Bindings and environments
	4.2 Scope
	4.2.1 Block structure
	4.2.2 Scope and visibility
	4.2.3 Static vs dynamic scoping

	4.3 Declarations
	4.3.1 Type declarations
	4.3.2 Constant declarations
	4.3.3 Variable declarations
	4.3.4 Procedure definitions
	4.3.5 Collateral declarations
	4.3.6 Sequential declarations
	4.3.7 Recursive declarations
	4.3.8 Scopes of declarations

	4.4 Blocks
	4.4.1 Block commands
	4.4.2 Block expressions
	4.4.3 The Qualification Principle

	Summary
	Further reading
	Exercises

	5 Procedural abstraction
	5.1 Function procedures and proper procedures
	5.1.1 Function procedures
	5.1.2 Proper procedures
	5.1.3 The Abstraction Principle

	5.2 Parameters and arguments
	5.2.1 Copy parameter mechanisms
	5.2.2 Reference parameter mechanisms
	5.2.3 The Correspondence Principle

	5.3 Implementation notes
	5.3.1 Implementation of procedure calls
	5.3.2 Implementation of parameter mechanisms

	Summary
	Further reading
	Exercises

	Part III: Advanced Concepts
	6 Data abstraction
	6.1 Program units, packages, and encapsulation
	6.1.1 Packages
	6.1.2 Encapsulation

	6.2 Abstract types
	6.3 Objects and classes
	6.3.1 Classes
	6.3.2 Subclasses and inheritance
	6.3.3 Abstract classes
	6.3.4 Single vs multiple inheritance
	6.3.5 Interfaces

	6.4 Implementation notes
	6.4.1 Representation of objects
	6.4.2 Implementation of method calls

	Summary
	Further reading
	Exercises

	7 Generic abstraction
	7.1 Generic units and instantiation
	7.1.1 Generic packages in ADA
	7.1.2 Generic classes in C++

	7.2 Type and class parameters
	7.2.1 Type parameters in ADA
	7.2.2 Type parameters in C++
	7.2.3 Class parameters in JAVA

	7.3 Implementation notes
	7.3.1 Implementation of ADA generic units
	7.3.2 Implementation of C++ generic units
	7.3.3 Implementation of JAVA generic units

	Summary
	Further reading
	Exercises

	8 Type systems
	8.1 Inclusion polymorphism
	8.1.1 Types and subtypes
	8.1.2 Classes and subclasses

	8.2 Parametric polymorphism
	8.2.1 Polymorphic procedures
	8.2.2 Parameterized types
	8.2.3 Type inference

	8.3 Overloading
	8.4 Type conversions
	8.5 Implementation notes
	8.5.1 Implementation of parametric polymorphism

	Summary
	Further reading
	Exercises

	9 Control flow
	9.1 Sequencers
	9.2 Jumps
	9.3 Escapes
	9.4 Exceptions
	9.5 Implementation notes
	9.5.1 Implementation of jumps and escapes
	9.5.2 Implementation of exceptions

	Summary
	Further reading
	Exercises

	10 Concurrency
	10.1 Why concurrency?
	10.2 Programs and processes
	10.3 Problems with concurrency
	10.3.1 Nondeterminism
	10.3.2 Speed dependence
	10.3.3 Deadlock
	10.3.4 Starvation

	10.4 Process interactions
	10.4.1 Independent processes
	10.4.2 Competing processes
	10.4.3 Communicating processes

	10.5 Concurrency primitives
	10.5.1 Process creation and control
	10.5.2 Interrupts
	10.5.3 Spin locks and wait-free algorithms
	10.5.4 Events
	10.5.5 Semaphores
	10.5.6 Messages
	10.5.7 Remote procedure calls

	10.6 Concurrent control abstractions
	10.6.1 Conditional critical regions
	10.6.2 Monitors
	10.6.3 Rendezvous

	Summary
	Further reading
	Exercises

	Part IV: Paradigms
	11 Imperative programming
	11.1 Key concepts
	11.2 Pragmatics
	11.2.1 A simple spellchecker

	11.3 Case study: C
	11.3.1 Values and types
	11.3.2 Variables, storage, and control
	11.3.3 Bindings and scope
	11.3.4 Procedural abstraction
	11.3.5 Independent compilation
	11.3.6 Preprocessor directives
	11.3.7 Function library
	11.3.8 A simple spellchecker

	11.4 Case study: ADA
	11.4.1 Values and types
	11.4.2 Variables, storage, and control
	11.4.3 Bindings and scope
	11.4.4 Procedural abstraction
	11.4.5 Data abstraction
	11.4.6 Generic abstraction
	11.4.7 Separate compilation
	11.4.8 Package library
	11.4.9 A simple spellchecker

	Summary
	Further reading
	Exercises

	12 Object-oriented programming
	12.1 Key concepts
	12.2 Pragmatics
	12.3 Case study: C++
	12.3.1 Values and types
	12.3.2 Variables, storage, and control
	12.3.3 Bindings and scope
	12.3.4 Procedural abstraction
	12.3.5 Data abstraction
	12.3.6 Generic abstraction
	12.3.7 Independent compilation and preprocessor directives
	12.3.8 Class and template library
	12.3.9 A simple spellchecker

	12.4 Case study: JAVA
	12.4.1 Values and types
	12.4.2 Variables, storage, and control
	12.4.3 Bindings and scope
	12.4.4 Procedural abstraction
	12.4.5 Data abstraction
	12.4.6 Generic abstraction
	12.4.7 Separate compilation and dynamic linking
	12.4.8 Class library
	12.4.9 A simple spellchecker

	12.5 Case study: ADA95
	12.5.1 Types
	12.5.2 Data abstraction

	Summary
	Further reading
	Exercises

	13 Concurrent programming
	13.1 Key concepts
	13.2 Pragmatics
	13.3 Case study: ADA95
	13.3.1 Process creation and termination
	13.3.2 Mutual exclusion
	13.3.3 Admission control

	13.3.4 Scheduling away deadlock
	13.4 Case study: JAVA
	13.4.1 Process creation and termination
	13.4.2 Mutual exclusion
	13.4.3 Admission control

	13.5 Implementation notes
	Summary
	Further reading
	Exercises

	14 Functional programming
	14.1 Key concepts
	14.1.1 Eager vs normal-order vs lazy evaluation

	14.2 Pragmatics
	14.3 Case study: HASKELL
	14.3.1 Values and types
	14.3.2 Bindings and scope
	14.3.3 Procedural abstraction
	14.3.4 Lazy evaluation
	14.3.5 Data abstraction
	14.3.6 Generic abstraction
	14.3.7 Modeling state
	14.3.8 A simple spellchecker

	Summary
	Further reading
	Exercises

	15 Logic programming
	15.1 Key concepts
	15.2 Pragmatics
	15.3 Case study: PROLOG
	15.3.1 Values, variables, and terms
	15.3.2 Assertions and clauses
	15.3.3 Relations
	15.3.4 The closed-world assumption
	15.3.5 Bindings and scope
	15.3.6 Control
	15.3.7 Input/output
	15.3.8 A simple spellchecker

	Summary
	Further reading
	Exercises

	16 Scripting
	16.1 Pragmatics
	16.2 Key concepts
	16.2.1 Regular expressions

	16.3 Case study: PYTHON
	16.3.1 Values and types
	16.3.2 Variables, storage, and control
	16.3.3 Bindings and scope
	16.3.4 Procedural abstraction
	16.3.5 Data abstraction
	16.3.6 Separate compilation
	16.3.7 Module library

	Summary
	Further reading
	Exercises

	Part V: Conclusion
	17 Language selection
	17.1 Criteria
	17.2 Evaluation
	Summary
	Exercises

	18 Language design
	18.1 Selection of concepts
	18.2 Regularity
	18.3 Simplicity
	18.4 Efficiency
	18.5 Syntax
	18.6 Language life cycles
	18.7 The future
	Summary
	Further reading
	Exercises

	Bibliography
	Glossary
	Index
	Team DDU

