
Introduction

If we were to describe the C# language and its associated environment, the .NET Framework, as the
most important new technology for developers for many years, we would not be exaggerating. .NET is
designed to provide a new environment within which you can develop almost any application to run on
Windows, while C# is a new programming language that has been designed specifically to work with
.NET. Using C# you can, for example, write a dynamic Web page, an XML Web service, a component of a
distributed application, a database access component, or a classic Windows desktop application. This
book covers the .NET Framework 1.1, the second release of the framework, though most of this book
also applies to .NET Framework 1.0. If you are coding using version 1.0, then you might have to make
some changes, which we try to note throughout the book.

Don’t be fooled by the .NET label. The NET bit in the name is there to emphasize Microsoft’s belief that
distributed applications, in which the processing is distributed between client and server, are the way
forward, but C# is not just a language for writing Internet or network-aware applications. It provides a
means for you to code up almost any type of software or component that you might need to write for the
Windows platform. Between them, C# and .NET are set both to revolutionize the way that you write
programs, and to make programming on Windows much easier than it has ever been.

That’s quite a substantial claim, and it needs to be justified. After all, we all know how quickly computer
technology changes. Every year Microsoft brings out new software, programming tools, or versions of
Windows, with the claim that these will be hugely beneficial to developers. So what’s different about
.NET and C#?

The Significance of .NET and C#
In order to understand the significance of .NET, it is useful to remind ourselves of the nature of many of
the Windows technologies that have appeared in the past ten years or so. Although they may look quite
different on the surface, all of the Windows operating systems from Windows 3.1 (introduced in 1992)
through Windows Server 2003 have the same familiar Windows API at their core. As we’ve progressed
through new versions of Windows, huge numbers of new functions have been added to the API, but this
has been a process of evolving and extending the API rather than replacing it.

The same can be said for many of the technologies and frameworks that we’ve used to develop software
for Windows. For example, COM (Component Object Model) originated as OLE (Object Linking and
Embedding). At the time, it was, to a large extent, simply a means by which different types of Office
documents could be linked, so that for example you could place a small Excel spreadsheet in your Word
document. From that it evolved into COM, DCOM (Distributed COM), and eventually COM+—a
sophisticated technology that formed the basis of the way almost all components communicated, as well
as implementing transactions, messaging services, and object pooling.

Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned about
backward compatibility. Over the years a huge base of third-party software has been written for
Windows, and Windows wouldn’t have enjoyed the success it has had if every time Microsoft intro-
duced a new technology it broke the existing code base!
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While backward compatibility has been a crucial feature of Windows technologies and one of the
strengths of the Windows platform, it does have a big disadvantage. Every time some technology
evolves and adds new features, it ends up a bit more complicated than it was before. 

It was clear that something had to change. Microsoft couldn’t go on forever extending the same develop-
ment tools and languages, always making them more and more complex in order to satisfy the conflict-
ing demands of keeping up with the newest hardware and maintaining backward compatibility with
what was around when Windows first became popular in the early 1990s. There comes a point where
you have to start with a clean slate if you want a simple yet sophisticated set of languages, environ-
ments, and developer tools, which make it easy for developers to write state-of-the-art software.

This fresh start is what C# and .NET are all about. Roughly speaking, .NET is a new framework—a new
API—for programming on the Windows platform. Along with the .NET Framework, C# is a new lan-
guage that has been designed from scratch to work with .NET, as well as to take advantage of all the
progress in developer environments and in our understanding of object-oriented programming princi-
ples that have taken place over the past 20 years.

Before we continue, we should make it clear that backward compatibility has not been lost in the pro-
cess. Existing programs will continue to work, and .NET was designed with the ability to work with
existing software. Communication between software components on Windows presently almost entirely
takes place using COM. Taking account of this, .NET does have the ability to provide wrappers around
existing COM components so that .NET components can talk to them.

It is true that you don’t need to learn C# in order to write code for .NET. Microsoft has extended C++,
provided another new language called J#, and made substantial changes to Visual Basic to turn it into
the more powerful language Visual Basic .NET, in order to allow code written in either of these lan-
guages to target the .NET environment. These other languages, however, are hampered by the legacy of
having evolved over the years rather than having been written from the start with today’s technology 
in mind.

This book will equip you to program in C#, while at the same time provide the necessary background in
how the .NET architecture works. We will not only cover the fundamentals of the C# language but also
go on to give examples of applications that use a variety of related technologies, including database
access, dynamic Web pages, advanced graphics, and directory access. The only requirement is that you
be familiar with at least one other high-level language used on Windows—either C++, Visual Basic, or
J++.

Advantages of .NET
We’ve talked in general terms about how great .NET is, but we haven’t said much about how it helps to
make your life as a developer easier. In this section, we’ll discuss some of the improved features of .NET
in brief.

❑ Object-Oriented Programming—both the .NET Framework and C# are entirely based on
object-oriented principles right from the start.

❑ Good Design—a base class library, which is designed from the ground up in a highly intuitive
way.
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❑ Language Independence—with .NET, all of the languages Visual Basic .NET, C#, J#, and man-
aged C++ compile to a common Intermediate Language. This means that languages are inter-
operable in a way that has not been seen before.

❑ Better Support for Dynamic Web Pages—while ASP offered a lot of flexibility, it was also ineffi-
cient because of its use of interpreted scripting languages, and the lack of object-oriented design
often resulted in messy ASP code. .NET offers an integrated support for Web pages, using a new
technology—ASP.NET. With ASP.NET, code in your pages is compiled, and may be written in a
.NET-aware high-level language such as C#, J#, or Visual Basic .NET.

❑ Efficient Data Access—a set of .NET components, collectively known as ADO.NET, provides
efficient access to relational databases and a variety of data sources. Components are also avail-
able to allow access to the file system, and to directories. In particular, XML support is built into
.NET, allowing you to manipulate data, which may be imported from or exported to non-
Windows platforms.

❑ Code Sharing—.NET has completely revamped the way that code is shared between applica-
tions, introducing the concept of the assembly, which replaces the traditional DLL. Assemblies
have formal facilities for versioning, and different versions of assemblies can exist side by side.

❑ Improved Security—each assembly can also contain built-in security information that can indi-
cate precisely who or what category of user or process is allowed to call which methods on
which classes. This gives you a very fine degree of control over how the assemblies that you
deploy can be used.

❑ Zero Impact Installation—there are two types of assembly: shared and private. Shared assem-
blies are common libraries available to all software, while private assemblies are intended only
for use with particular software. A private assembly is entirely self-contained, so the process of
installing it is simple. There are no registry entries; the appropriate files are simply placed in the
appropriate folder in the file system.

❑ Support for Web Services—.NET has fully integrated support for developing Web services as
easily as you’d develop any other type of application.

❑ Visual Studio .NET 2003—.NET comes with a developer environment, Visual Studio .NET,
which can cope equally well with C++, C#, J#, and Visual Basic .NET, as well as with ASP.NET
code. Visual Studio .NET integrates all the best features of the respective language-specific envi-
ronments of Visual Studio 6.

❑ C#—C# is a new object-oriented language intended for use with .NET.

We will be looking more closely at the benefits of the .NET architecture in Chapter 1.

What’s New in the .NET Framework 1.1
The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The latest ver-
sion, the .NET Framework 1.1, was introduced in 2003 and is considered a minor release of the frame-
work. Even though this is considered a minor release of the framework, there are some pretty
outstanding new changes and additions to this new version and it definitely deserves some attention.

With all the changes made to version 1.1 of the framework, Microsoft tried to ensure that there were
minimal breaking changes to code developed in using version 1.0. Even though the effort was there,
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there are some breaking changes between the versions. A lot of these breaking changes were made in
order to improve security. You will find a comprehensive list of breaking changes on Microsoft’s
GotDotNet Web site at http://www.gotdotnet.com.

The following details some of the changes that are new to the .NET Framework 1.1 as well as new addi-
tions to Visual Studio .NET 2003—the development environment for the .NET Framework 1.1.

Mobility
When using the .NET Framework 1.0 and Visual Studio .NET 2002, to be able to build mobile applica-
tions you had to go out and download the Microsoft Mobile Internet Toolkit (MMIT). Now, with the
.NET Framework 1.1 and Visual Studio .NET 2003, this is built right in and therefore no separate down-
load is required.

This is all quite evident when you create a new project using Visual Studio .NET 2003. For instance,
when you look at the list of available C# project types you can create, you will find ASP.NET Mobile
Web Application and Smart Device Application. You would use the ASP.NET Mobile Web Application
project type to build Web-based mobile applications (as the name describes). Building a Smart Device
Application allows you to create applications for the Pocket PC or any other Windows CE device. The
thick-client applications built for a Windows CE device utilize the Compact Framework, a trimmed-
down version of the .NET Framework.

Opening one of these mobile project types, you will then be presented with a list of available mobile
server controls in the Visual Studio .NET Toolbox that you can then use to build your applications.

New Data Providers
Another big area of change in the framework is to ADO.NET. ADO.NET, the .NET way of accessing and
working with data, now has two new data providers—one for ODBC and another for Oracle.

An ODBC data provider was available when working with the .NET Framework 1.0, but this required a
separate download. Also, once downloaded, the namespace for this data provider was
Microsoft.Data.Odbc.

With the .NET Framework 1.1, the ODBC data provider is built right in, and no separate download is
required. You will now be able to work with ODBC data sources through the System.Data.Odbc
namespace. This also gives you access to ODBC data connection, data adapter, and data reader objects.

The other new data provider is for working with Oracle databases. This database is quite popular in the
enterprise space, and the lack of an Oracle data provider often times was a big barrier for .NET to enter
this space. To work with this new data provider, you will need to make a reference to the System.Data
.OracleClient namespace in your project.

Make sure that you create a staging server to completely test the upgrade of your
applications to the .NET Framework 1.1 as opposed to just upgrading a live 
application.
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