
Introduction

If we were to describe the C# language and its associated environment, the .NET Framework, as the
most important new technology for developers for many years, we would not be exaggerating. .NET is
designed to provide a new environment within which you can develop almost any application to run on
Windows, while C# is a new programming language that has been designed specifically to work with
.NET. Using C# you can, for example, write a dynamic Web page, an XML Web service, a component of a
distributed application, a database access component, or a classic Windows desktop application. This
book covers the .NET Framework 1.1, the second release of the framework, though most of this book
also applies to .NET Framework 1.0. If you are coding using version 1.0, then you might have to make
some changes, which we try to note throughout the book.

Don’t be fooled by the .NET label. The NET bit in the name is there to emphasize Microsoft’s belief that
distributed applications, in which the processing is distributed between client and server, are the way
forward, but C# is not just a language for writing Internet or network-aware applications. It provides a
means for you to code up almost any type of software or component that you might need to write for the
Windows platform. Between them, C# and .NET are set both to revolutionize the way that you write
programs, and to make programming on Windows much easier than it has ever been.

That’s quite a substantial claim, and it needs to be justified. After all, we all know how quickly computer
technology changes. Every year Microsoft brings out new software, programming tools, or versions of
Windows, with the claim that these will be hugely beneficial to developers. So what’s different about
.NET and C#?

The Significance of .NET and C#
In order to understand the significance of .NET, it is useful to remind ourselves of the nature of many of
the Windows technologies that have appeared in the past ten years or so. Although they may look quite
different on the surface, all of the Windows operating systems from Windows 3.1 (introduced in 1992)
through Windows Server 2003 have the same familiar Windows API at their core. As we’ve progressed
through new versions of Windows, huge numbers of new functions have been added to the API, but this
has been a process of evolving and extending the API rather than replacing it.

The same can be said for many of the technologies and frameworks that we’ve used to develop software
for Windows. For example, COM (Component Object Model) originated as OLE (Object Linking and
Embedding). At the time, it was, to a large extent, simply a means by which different types of Office
documents could be linked, so that for example you could place a small Excel spreadsheet in your Word
document. From that it evolved into COM, DCOM (Distributed COM), and eventually COM+—a
sophisticated technology that formed the basis of the way almost all components communicated, as well
as implementing transactions, messaging services, and object pooling.

Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned about
backward compatibility. Over the years a huge base of third-party software has been written for
Windows, and Windows wouldn’t have enjoyed the success it has had if every time Microsoft intro-
duced a new technology it broke the existing code base!

01 557599 FM.qxd 4/29/04 11:32 AM Page xxvii

xxviii

Introduction

While backward compatibility has been a crucial feature of Windows technologies and one of the
strengths of the Windows platform, it does have a big disadvantage. Every time some technology
evolves and adds new features, it ends up a bit more complicated than it was before.

It was clear that something had to change. Microsoft couldn’t go on forever extending the same develop-
ment tools and languages, always making them more and more complex in order to satisfy the conflict-
ing demands of keeping up with the newest hardware and maintaining backward compatibility with
what was around when Windows first became popular in the early 1990s. There comes a point where
you have to start with a clean slate if you want a simple yet sophisticated set of languages, environ-
ments, and developer tools, which make it easy for developers to write state-of-the-art software.

This fresh start is what C# and .NET are all about. Roughly speaking, .NET is a new framework—a new
API—for programming on the Windows platform. Along with the .NET Framework, C# is a new lan-
guage that has been designed from scratch to work with .NET, as well as to take advantage of all the
progress in developer environments and in our understanding of object-oriented programming princi-
ples that have taken place over the past 20 years.

Before we continue, we should make it clear that backward compatibility has not been lost in the pro-
cess. Existing programs will continue to work, and .NET was designed with the ability to work with
existing software. Communication between software components on Windows presently almost entirely
takes place using COM. Taking account of this, .NET does have the ability to provide wrappers around
existing COM components so that .NET components can talk to them.

It is true that you don’t need to learn C# in order to write code for .NET. Microsoft has extended C++,
provided another new language called J#, and made substantial changes to Visual Basic to turn it into
the more powerful language Visual Basic .NET, in order to allow code written in either of these lan-
guages to target the .NET environment. These other languages, however, are hampered by the legacy of
having evolved over the years rather than having been written from the start with today’s technology
in mind.

This book will equip you to program in C#, while at the same time provide the necessary background in
how the .NET architecture works. We will not only cover the fundamentals of the C# language but also
go on to give examples of applications that use a variety of related technologies, including database
access, dynamic Web pages, advanced graphics, and directory access. The only requirement is that you
be familiar with at least one other high-level language used on Windows—either C++, Visual Basic, or
J++.

Advantages of .NET
We’ve talked in general terms about how great .NET is, but we haven’t said much about how it helps to
make your life as a developer easier. In this section, we’ll discuss some of the improved features of .NET
in brief.

❑ Object-Oriented Programming—both the .NET Framework and C# are entirely based on
object-oriented principles right from the start.

❑ Good Design—a base class library, which is designed from the ground up in a highly intuitive
way.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxviii

xxix

Introduction

❑ Language Independence—with .NET, all of the languages Visual Basic .NET, C#, J#, and man-
aged C++ compile to a common Intermediate Language. This means that languages are inter-
operable in a way that has not been seen before.

❑ Better Support for Dynamic Web Pages—while ASP offered a lot of flexibility, it was also ineffi-
cient because of its use of interpreted scripting languages, and the lack of object-oriented design
often resulted in messy ASP code. .NET offers an integrated support for Web pages, using a new
technology—ASP.NET. With ASP.NET, code in your pages is compiled, and may be written in a
.NET-aware high-level language such as C#, J#, or Visual Basic .NET.

❑ Efficient Data Access—a set of .NET components, collectively known as ADO.NET, provides
efficient access to relational databases and a variety of data sources. Components are also avail-
able to allow access to the file system, and to directories. In particular, XML support is built into
.NET, allowing you to manipulate data, which may be imported from or exported to non-
Windows platforms.

❑ Code Sharing—.NET has completely revamped the way that code is shared between applica-
tions, introducing the concept of the assembly, which replaces the traditional DLL. Assemblies
have formal facilities for versioning, and different versions of assemblies can exist side by side.

❑ Improved Security—each assembly can also contain built-in security information that can indi-
cate precisely who or what category of user or process is allowed to call which methods on
which classes. This gives you a very fine degree of control over how the assemblies that you
deploy can be used.

❑ Zero Impact Installation—there are two types of assembly: shared and private. Shared assem-
blies are common libraries available to all software, while private assemblies are intended only
for use with particular software. A private assembly is entirely self-contained, so the process of
installing it is simple. There are no registry entries; the appropriate files are simply placed in the
appropriate folder in the file system.

❑ Support for Web Services—.NET has fully integrated support for developing Web services as
easily as you’d develop any other type of application.

❑ Visual Studio .NET 2003—.NET comes with a developer environment, Visual Studio .NET,
which can cope equally well with C++, C#, J#, and Visual Basic .NET, as well as with ASP.NET
code. Visual Studio .NET integrates all the best features of the respective language-specific envi-
ronments of Visual Studio 6.

❑ C#—C# is a new object-oriented language intended for use with .NET.

We will be looking more closely at the benefits of the .NET architecture in Chapter 1.

What’s New in the .NET Framework 1.1
The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The latest ver-
sion, the .NET Framework 1.1, was introduced in 2003 and is considered a minor release of the frame-
work. Even though this is considered a minor release of the framework, there are some pretty
outstanding new changes and additions to this new version and it definitely deserves some attention.

With all the changes made to version 1.1 of the framework, Microsoft tried to ensure that there were
minimal breaking changes to code developed in using version 1.0. Even though the effort was there,

01 557599 FM.qxd 4/29/04 11:32 AM Page xxix

xxx

Introduction

there are some breaking changes between the versions. A lot of these breaking changes were made in
order to improve security. You will find a comprehensive list of breaking changes on Microsoft’s
GotDotNet Web site at http://www.gotdotnet.com.

The following details some of the changes that are new to the .NET Framework 1.1 as well as new addi-
tions to Visual Studio .NET 2003—the development environment for the .NET Framework 1.1.

Mobility
When using the .NET Framework 1.0 and Visual Studio .NET 2002, to be able to build mobile applica-
tions you had to go out and download the Microsoft Mobile Internet Toolkit (MMIT). Now, with the
.NET Framework 1.1 and Visual Studio .NET 2003, this is built right in and therefore no separate down-
load is required.

This is all quite evident when you create a new project using Visual Studio .NET 2003. For instance,
when you look at the list of available C# project types you can create, you will find ASP.NET Mobile
Web Application and Smart Device Application. You would use the ASP.NET Mobile Web Application
project type to build Web-based mobile applications (as the name describes). Building a Smart Device
Application allows you to create applications for the Pocket PC or any other Windows CE device. The
thick-client applications built for a Windows CE device utilize the Compact Framework, a trimmed-
down version of the .NET Framework.

Opening one of these mobile project types, you will then be presented with a list of available mobile
server controls in the Visual Studio .NET Toolbox that you can then use to build your applications.

New Data Providers
Another big area of change in the framework is to ADO.NET. ADO.NET, the .NET way of accessing and
working with data, now has two new data providers—one for ODBC and another for Oracle.

An ODBC data provider was available when working with the .NET Framework 1.0, but this required a
separate download. Also, once downloaded, the namespace for this data provider was
Microsoft.Data.Odbc.

With the .NET Framework 1.1, the ODBC data provider is built right in, and no separate download is
required. You will now be able to work with ODBC data sources through the System.Data.Odbc
namespace. This also gives you access to ODBC data connection, data adapter, and data reader objects.

The other new data provider is for working with Oracle databases. This database is quite popular in the
enterprise space, and the lack of an Oracle data provider often times was a big barrier for .NET to enter
this space. To work with this new data provider, you will need to make a reference to the System.Data
.OracleClient namespace in your project.

Make sure that you create a staging server to completely test the upgrade of your
applications to the .NET Framework 1.1 as opposed to just upgrading a live
application.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxx

	Professional C#
	Cover

	Content
	Introduction
	Part I: The C# Language
	Chapter 1: .NET Architecture
	The Relationship of C# to .NET
	The Common Language Runtime
	Advantages of Managed Code

	A Closer Look at Intermediate Language
	Support for Object Orientation and Interfaces
	Distinct Value and Reference Types
	Strong Data Typing
	Error Handling with Exceptions
	Use of Attributes

	Assemblies
	Private Assemblies
	Shared Assemblies
	Reflection

	.NET Framework Classes
	Namespaces

	Creating .NET Applications Using C#
	Creating ASP.NET Applications
	Creating Windows Forms
	Windows Services

	The Role of C# in the .NET Enterprise Architecture
	Summary

	Chapter 2: C# Basics
	Before We Start
	Our First C# Program
	The Code
	Compiling and Running the Program
	A Closer Look

	Variables
	Initialization of Variables
	Variable Scope
	Constants

	Predefined Data Types
	Value Types and Reference Types
	CTS Types
	Predefined Value Types
	Predefined Reference Types

	Flow Control
	Conditional Statements
	Loops
	Jump Statements

	Enumerations
	Arrays
	Namespaces
	The using Statement
	Namespace Aliases

	The Main() Method
	Multiple Main() Methods
	Passing Arguments to Main()

	More on Compiling C# Files
	Console I/O
	Using Comments
	Internal Comments Within the Source Files
	XML Documentation

	The C# Preprocessor Directives
	#define and #undef
	#if, #elif, #else, and #endif
	#warning and #error
	#region and #endregion
	#line

	C# Programming Guidelines
	Rules for Identifiers
	Usage Conventions

	Summary

	Chapter 3: Objects and Types
	Classes and Structs
	Class Members
	Data Members
	Function Members
	readonly Fields

	Structs
	Structs Are Value Types
	Structs and Inheritance
	Constructors for Structs

	The Object Class
	System.Object Methods
	The ToString() Method

	Summary

	Chapter 4: Inheritance
	Types of Inheritance
	Implementation Versus Interface Inheritance
	Multiple Inheritance
	Structs and Classes

	Implementation Inheritance
	Virtual Methods
	Hiding Methods
	Calling Base Versions of Functions
	Abstract Classes and Functions
	Sealed Classes and Methods
	Constructors of Derived Classes

	Modifiers
	Visibility Modifiers
	Other Modifiers

	Interfaces
	Defining and Implementing Interfaces
	Derived Interfaces

	Summary

	Chapter 5: Operators and Casts
	Operators
	Operator Shortcuts
	The Ternary Operator
	The checked and unchecked Operators
	The is Operator
	The as Operator
	The sizeof Operator
	The typeof Operator
	Operator Precedence

	Type Safety
	Type Conversions
	Boxing and Unboxing

	Comparing Objects for Equality
	Comparing Reference Types for Equality
	The ReferenceEquals() Method
	The virtual Equals() Method
	The static Equals() Method
	Comparison Operator (==)
	Comparing Value Types for Equality

	Operator Overloading
	How Operators Work
	Operator Overloading Example: The Vector Struct
	Which Operators Can You Overload?

	User-Defined Casts
	Implementing User-Defined Casts
	Multiple Casting

	Summary

	Chapter 6: Delegates and Events
	Delegates
	Using Delegates in C#
	SimpleDelegate Example
	BubbleSorter Example
	Multicast Delegates

	Events
	The Receiver's View of Events
	Generating Events

	Summary

	Chapter 7: Memory Management and Pointers
	Memory Management under the Hood
	Value Data Types
	Reference Data Types
	Garbage Collection

	Freeing Unmanaged Resources
	Destructors
	The IDisposable Interface
	Implementing IDisposable and a Destructor

	Unsafe Code
	Pointers
	Pointer Example: PointerPlayaround
	Using Pointers to Optimize Performance

	Summary

	Chapter 8: Strings and Regular Expressions
	System.String
	Building Strings
	Format Strings

	Regular Expressions
	Introduction to Regular Expressions
	The RegularExpressionsPlayaround Example
	Displaying Results
	Matches, Groups, and Captures

	Summary

	Chapter 9: Collections
	Examining Groups of Objects
	Array Lists
	Collections
	Dictionaries

	Summary

	Chapter 10: Reflection
	Custom Attributes
	Writing Custom Attributes
	Custom Attribute Example: WhatsNewAttributes

	Reflection
	The System.Type Class
	The TypeView Example
	The Assembly Class
	Completing the WhatsNewAttributes Sample

	Summary

	Chapter 11: Errors and Exceptions
	Looking into Errors and Exception Handling
	Exception Classes
	Catching Exceptions
	User-Defined Exception Classes

	Summary

	Part II: The .NET Environment
	Chapter 12: Visual Studio .NET
	Working with Visual Studio .NET 2003
	Creating a Project
	Solutions and Projects
	Windows Application Code
	Reading in Visual Studio 6 Projects
	Exploring and Coding a Project
	Building a Project
	Debugging

	Other .NET Tools
	The ASP.NET Web Matrix Project
	WinCV

	Summary

	Chapter 13: Assemblies
	What Are Assemblies?
	The Answer to DLL Hell
	Features of Assemblies
	Application Domains and Assemblies

	Assembly Structure
	Assembly Manifests
	Namespaces, Assemblies, and Components
	Private and Shared Assemblies
	Viewing Assemblies
	Building Assemblies

	Cross-Language Support
	The CTS and the CLS
	Language Independence in Action
	CLS Requirements

	Global Assembly Cache
	Native Image Generator
	Global Assembly Cache Viewer
	Global Assembly Cache Utility (gacutil.exe)

	Creating Shared Assemblies
	Shared Assembly Names
	Creating a Shared Assembly

	Configuration
	Configuration Categories
	Versioning
	Configuring Directories

	Summary

	Chapter 14: .NET Security
	Code Access Security
	Code Groups
	Code Access Permissions and Permissions Sets
	Policy Levels: Machine, User, and Enterprise

	Support for Security in the Framework
	Demanding Permissions
	Requesting Permissions
	Implicit Permission
	Denying Permissions
	Asserting Permissions
	Creating Code Access Permissions
	Declarative Security

	Role-Based Security
	The Principal
	Windows Principal
	Roles
	Declarative Role-Based Security

	Managing Security Policy
	The Security Configuration File
	Managing Code Groups and Permissions
	Turning Security On and Off
	Resetting Security Policy
	Creating a Code Group
	Deleting a Code Group
	Changing a Code Group's Permissions
	Creating and Applying Permissions Sets
	Distributing Code Using a Strong Name
	Distributing Code Using Certificates
	Managing Zones

	Summary

	Chapter 15: Threading
	Threading
	Applications with Multiple Threads
	Manipulating Threads
	The ThreadPlayaround Sample
	Thread Priorities
	Synchronization

	Summary

	Chapter 16: Distributed Applications with .NET Remoting
	What Is .NET Remoting?
	Application Types and Protocols
	CLR Object Remoting

	.NET Remoting Overview
	Contexts
	Activation
	Attributes and Properties
	Communication between Contexts

	Remote Objects, Clients, and Servers
	Remote Objects
	A Simple Server
	A Simple Client

	.NET Remoting Architecture
	Channels
	Formatters
	ChannelServices and RemotingConfiguration
	Object Activation
	Message Sinks
	Passing Objects in Remote Methods
	Lifetime Management

	Miscellaneous .NET Remoting Features
	Configuration Files
	Hosting Applications
	Classes, Interfaces, and SoapSuds
	Asynchronous Remoting
	Remoting and Events
	Call Contexts

	Summary

	Chapter 17: Localization
	Namespace System.Globalization
	Unicode Issues
	Cultures and Regions
	Cultures in Action
	Sorting

	Resources
	Creating Resource Files
	ResGen
	ResourceWriter
	Using Resource Files
	The System.Resources Namespace

	Localization Example Using Visual Studio .NET
	Outsourcing Translations
	Changing the Culture Programmatically
	Using Binary Resource Files
	Using XML Resource Files
	Automatic Fallback for Resources

	Globalization and Localization with ASP.NET
	A Custom Resource Reader
	Creating a DatabaseResourceReader
	Creating a DatabaseResourceSet
	Creating a DatabaseResourceManager
	Client Application for DatabaseResourceReader

	Summary

	Chapter 18: Deployment
	Designing for Deployment
	Deployment Options
	Xcopy
	Copy Project
	Deployment Projects

	Deployment Requirements
	Simple Deployment
	Xcopy
	Xcopy and Web Applications
	Copy Project

	Installer Projects
	What Is Windows Installer?
	Creating Installers
	Advanced Options

	Summary

	Part III: Windows Forms
	Chapter 19: Windows Forms
	Creating a Windows Form Application
	Control Class
	Size and Location
	Appearance
	User Interaction
	Windows Functionality
	Miscellaneous Functionality
	Class Hierarchy

	Standard Controls and Components
	Forms
	Form Class
	Multiple Document Interface (MDI)
	Custom Controls

	Summary

	Chapter 20: Graphics with GDI+
	Understanding Drawing Principles
	GDI and GDI+
	Drawing Shapes
	Painting Shapes Using OnPaint()
	Using the Clipping Region

	Measuring Coordinates and Areas
	Point and PointF
	Size and SizeF
	Rectangle and RectangleF
	Region

	A Note about Debugging
	Drawing Scrollable Windows
	World, Page, and Device Coordinates

	Colors
	Red-Green-Blue (RGB) Values
	The Named Colors
	Graphics Display Modes and the Safety Palette
	The Safety Palette

	Pens and Brushes
	Brushes
	Pens

	Drawing Shapes and Lines
	Displaying Images
	Issues When Manipulating Images

	Drawing Text
	Simple Text Example

	Fonts and Font Families
	Example: Enumerating Font Families
	Editing a Text Document: The CapsEditor Sample
	The Invalidate() Method
	Calculating Item Sizes and Document Size
	OnPaint()
	Coordinate Transforms
	Responding to User Input

	Printing
	Implementing Print and Print Preview

	Summary

	Part IV: Data
	Chapter 21: Data Access with .NET
	ADO.NET Overview
	Namespaces
	Shared Classes
	Database-Specific Classes

	Using Database Connections
	Using Connections Efficiently
	Transactions

	Commands
	Executing Commands
	Calling Stored Procedures

	Fast Data Access: The Data Reader
	Managing Data and Relationships: The DataSet Class
	Data Tables
	Data Columns
	Data Relationships
	Data Constraints

	XML Schemas
	Generating Code with XSD

	Populating a DataSet
	Populating a DataSet Class with a Data Adapter
	Populating a DataSet from XML

	Persisting DataSet Changes
	Updating with Data Adapters
	Writing XML Output

	Working with ADO.NET
	Tiered Development
	Key Generation with SQL Server
	Naming Conventions

	Summary

	Chapter 22: Viewing .NET Data
	The DataGrid Control
	Displaying Tabular Data
	Data Sources
	DataGrid Class Hierarchy

	Data Binding
	Simple Binding
	Data-Binding Objects

	Visual Studio.NET and Data Access
	Creating a Connection
	Selecting Data
	Generating a DataSet
	Updating the Data Source
	Building a Schema
	Other Common Requirements

	Summary

	Chapter 23: Manipulating XML
	XML Standards Support in .NET
	Introducing the System.Xml Namespace
	Using MSXML in .NET
	Using System.Xml Classes
	Reading and Writing Streamed XML
	Using the XmlTextReader Class
	Using the XmlValidatingReader Class
	Using the XmlTextWriter Class

	Using the DOM in .NET
	Using the XmlDocument Class

	Using XPath and XSLT in .NET
	The System.Xml.XPath Namespace
	The System.Xml.Xsl Namespace

	XML and ADO.NET
	Converting ADO.NET Data to XML
	Converting XML to ADO.NET Data
	Reading and Writing a DiffGram

	Serializing Objects in XML
	Serialization without Source Code Access

	Summary

	Chapter 24: Working with Active Directory
	The Architecture of Active Directory
	Features
	Active Directory Concepts
	Characteristics of Active Directory Data
	Schema

	Administration Tools for Active Directory
	Active Directory Users and Computers
	ADSI Edit

	Active Directory Service Interfaces (ADSI)
	Programming Active Directory
	Classes in System.DirectoryServices
	Binding
	Getting Directory Entries
	Object Collections
	Cache
	Creating New Objects
	Updating Directory Entries
	Accessing Native ADSI Objects
	Searching in Active Directory

	Searching for User Objects
	User Interface
	Get the Schema Naming Context
	Get the Property Names of the User Class
	Search for User Objects

	Summary

	Part V: Web Programming
	Chapter 25: ASP.NET Pages
	ASP.NET Introduction
	State Management in ASP.NET

	ASP.NET Web Forms
	ASP.NET Server Controls

	ADO.NET and Data Binding
	Updating the Event-Booking Application
	More on Data Binding

	Application Configuration
	Summary

	Chapter 26: Web Services
	SOAP
	WSDL
	Web Services
	Exposing Web Services
	Consuming Web Services

	Extending the Event-Booking Example
	The Event-Booking Web Service
	The Event-Booking Client

	Exchanging Data Using SOAP Headers
	Summary

	Chapter 27: User Controls and Custom Controls
	User Controls
	A Simple User Control

	Custom Controls
	Custom Control Project Configuration
	Basic Custom Controls
	Creating a Composite Custom Control

	A Straw Poll Control
	The Candidate Controls
	The StrawPoll Control Builder
	Straw Poll Style
	The Straw Poll Control

	Summary

	Part VI: Interop
	Chapter 28: COM Interoperability
	.NET and COM
	Metadata
	Freeing Memory
	Interfaces
	Method Binding
	Data Types
	Registration
	Threading
	Error Handling
	Event Handling

	Marshaling
	Using a COM Component from a .NET Client
	Creating a COM Component
	Creating a Runtime Callable Wrapper
	Threading Issues
	Adding Connection Points
	Using ActiveX Controls in Windows Forms
	Using COM Objects from within ASP.NET

	Using a .NET Component from a COM Client
	COM Callable Wrapper
	Creating a .NET Component
	Creating a Type Library
	COM Interop Attributes
	COM Registration
	Creating a COM Client
	Adding Connection Points
	Creating a Client with a Sink Object
	Running Windows Forms Controls in Internet Explorer

	Summary

	Chapter 29: Enterprise Services
	Overview
	History
	Where to Use Enterprise Services?
	Contexts
	Automatic Transactions
	Distributed Transactions
	Object Pooling
	Role-based Security
	Queued Components
	Loosely Coupled Events

	Creating a Simple COM+ Application
	Class ServicedComponent
	Application Attributes
	Creating the Component

	Deployment
	Automatic Deployment
	Manual Deployment

	Component Services Admin Tool
	Client Application
	Transactions
	ACID Properties
	Transaction Attributes
	Transaction Results
	Sample Application

	Summary

	Part VII: Windows Base Services
	Chapter 30: File and Registry Operations
	Managing the File System
	.NET Classes That Represent Files and Folders
	The Path Class
	Example: A File Browser

	Moving, Copying, and Deleting Files
	Example: FilePropertiesAndMovement

	Reading and Writing to Files
	Streams
	Reading and Writing to Binary Files
	Reading and Writing to Text Files

	Reading and Writing to the Registry
	The Registry
	The .NET Registry Classes
	Example: SelfPlacingWindow

	Summary

	Chapter 31: Accessing the Internet
	The WebClient Class
	Downloading Files
	Basic Web Client Example
	Uploading Files

	WebRequest and WebResponse Classes
	Other WebRequest and WebResponse Features

	Displaying Output as an HTML Page
	The Web Request and Web Response Hierarchy

	Utility Classes
	URIs
	IP Addresses and DNS Names

	Lower-Level Protocols
	Lower-Level Classes

	Summary

	Chapter 32: Windows Services
	What Is a Windows Service?
	Windows Services Architecture
	Service Program
	Service Control Program
	Service Configuration Program

	System.ServiceProcess Namespace
	Creating a Windows Service
	A Class Library Using Sockets
	TcpClient Example
	Windows Service Project
	Threading and Services
	Service Installation
	Installation Program

	Monitoring and Controlling the Service
	MMC Computer Management
	net.exe
	sc.exe
	Visual Studio .NET Server Explorer
	ServiceController Class

	Troubleshooting
	Interactive Services
	Event Logging
	Performance Monitoring

	Power Events
	Summary

	Appendix A: Principles of Object-Oriented Programming
	Appendix B: C# for Visual Basic 6 Developers
	Appendix C: C# for Java Developers
	Appendix D: C# for C++ Developers
	Index
	Team DDU

