Preface

The last two decennia have witnessed many advances in the area of software
development. The advent of object-oriented programming languages and modelling
languages such as Unified Modeling Language (UML) has increased our ability
as developers to design and realize large and enterprise-wide software systems.
However, software engineering, as a discipline seems to be lacking in its sup-
port for reference models that can be used in order to help developers create new
systems quickly and efficiently. The software development process is still a very
context-sensitive and idiosyncratic process. Whereas disciplines such as chemical
engineering and mathematics have developed domain models for a range of prob-
lems, the IT industry is in general lacking in such models. Software development
tends to be a very personal experience and in many cases how a system is to be
developed is a product of a single person’s insights. This is a potentially dangerous
state of affairs because there is no guarantee that the resulting model reflects the
problem domain well.

This book introduces a number of so-called models (we call them domain archi-
tectures) that act as ‘cookie-cutters’ or reference models for more specific real-life
applications. Working with domain architectures demands a shift in thinking because
when designing a new software system we try to categorize it as an instance sys-
tem of one or more domain architectures. Having done that we can reuse and
specialize the requirements, viewpoints and generic architecture to the specific sys-
tems. This results in massive reuse at the architectural and design levels while the
risk of failure is reduced because the reference models in this book are based in
real-life applications and experience. They have been used on real projects with
real customers.

The reference models can and should be used in much the same way as people
reason about the world around them. This is the Ausubel subsumption theory: when
developing software systems we relate new knowledge to relevant concepts and
propositions we already know.



XVi Preface

ACKNOWLEDGEMENTS

Although many of the results in this book are based on my own work it would
have been impossible to write this literature without the support and feedback from
many organizations and individuals that I’ve come in to contact with during the
last 25 years. First, I would like to thank Datasim’s customers who have attended
our analysis and design courses since 1992. It is impossible to name them all and
we wish to thank them for their feedback. Particular thanks goes to the following
individuals (in random order): Paul Langemeijer, Hans Plekker, Henry Rodenburgh,
Marten Kramer, Wim van Leeuwen, Robert Demming, Adriaan Meeling, Martijn
Boeker, Vladimir Grafov, Jeff Keustermans, Teun Mentzel, Ilona Hooft Graafland
and many more. For all others who have had some form of involvement with me
throughout the years, many thanks to you as well.

This work has been importantly influenced by several major sources. Firstly,
Michael Jackson who is the originator of Problem Frames and who sparked a number
of ideas that led to Domain Architectures. Secondly, the researchers in the Design
Patterns movement (too many to mention) who realize that software development is
a repetitive process and that a multitude of patterns can be discovered, documented
and used in many different contexts. Finally, to Bjarne Stroustrup, the inventor of
C++ for his efforts in making OO more accessible to a wide audience. A word of
thanks is due to the ‘three amigos’ Booch, Jacobson and Rumbaugh for their hugely
successful efforts in making UML the defacto standard for object-oriented analysis
and design.

A special word of thanks is due to the staff at Wiley in Chichester who had
infinite patience with me.

Finally, I wish to thank my family, Ilona Hooft Graafland and Brendan Duffy for
their patience during the preparation of this book. They probably wondered when
the book would finally be finished. Hopefully as I write this sentence. . .

Daniel J. Duffy

Datasim Education BV, Amsterdam
February 2004

dduffy @datasim.nl



	Domain Architectures : Models and Architectures for UML Applications
	Cover

	Contents
	Preface
	PART I Background and fundamentals
	1. Introducing and motivating domain architectures
	1.1 What is this book?
	1.2 Why have we written this book?
	1.3 For whom is this book intended?
	1.4 Why should I read this book?
	1.5 What is a domain architecture, really?
	1.6 The Datasim Development Process (DDP)
	1.7 The structure of this book
	1.8 What this book does not cover

	2. Domain architecture catalogue
	2.1 Introduction and objectives
	2.2 Management Information Systems (MIS) (Chapter 5)
	2.3 Process Control Systems (PCS) (Chapter 6)
	2.4 Resource Allocation and Tracking (RAT) systems (Chapter 7)
	2.5 Manufacturing (MAN) systems (Chapter 8)
	2.6 Access Control Systems (ACS) (Chapter 9)
	2.7 Lifecycle and composite models (Chapter 10)

	3. Software lifecycle and Datasim Development Process (DDP)
	3.1 Introduction and objectives
	3.2 The Software Lifecycle
	3.3 Reducing the scope
	3.4 The requirements/architecture phase in detail
	3.5 The object-oriented analysis process
	3.6 Project cultures and DDP
	3.6.1 Calendar-driven projects
	3.6.2 Requirements-driven projects
	3.6.3 Documentation-driven style
	3.6.4 Quality-driven style
	3.6.5 Architecture-driven style
	3.6.6 Process-driven style and the DDP

	3.7 Summary and conclusions

	4. Fundamental concepts and documentation issues
	4.1 Introduction and objectives
	4.2 How we document domain architectures
	4.3 Characteristics of ISO 9126 and its relationship with domain architectures
	4.4 Documenting high-level artefacts
	4.5 Goals and core processes
	4.6 System context
	4.7 Stakeholders and viewpoints
	4.7.1 Documenting viewpoints
	4.8 Documenting requirements
	4.9 De.ning and documenting use cases
	4.10 Summary and conclusions
	Appendix 4.1: A critical look at use cases


	PART II Domain architectures (meta models)
	5. Management Information Systems (MIS)
	5.1 Introduction and objectives
	5.2 Background and history
	5.3 Motivational examples
	5.3.1 Simple Digital Watch (SDW)
	5.3.2 Instrumentation and control systems

	5.4 General applicability
	5.5 Goals, processes and activities
	5.6 Context diagram and system decomposition
	5.7 Stakeholders, viewpoints and requirements
	5.8 UML classes
	5.9 Use cases
	5.10 Specializations of MIS systems
	5.10.1 Example: Noise control engineering

	5.11 Using MIS systems with other systems
	5.12 Summary and conclusions

	6. Process Control Systems (PCS)
	6.1 Introduction and objectives
	6.2 Background and history
	6.3 Motivational examples
	6.3.1 Simple water level control
	6.3.2 Bioreactor
	6.3.3 Barrier options

	6.4 Reference models for Process Control Systems
	6.4.1 Basic components and variables
	6.4.2 Control engineering fundamentals

	6.5 General applicability
	6.6 Goals, processes and activities
	6.7 Context diagram and system decomposition
	6.7.1 Decomposition strategies

	6.8 Stakeholders, viewpoints and requirements
	6.8.1 Input and output variable completeness
	6.8.2 Robustness criteria
	6.8.3 Timing
	6.8.4 Human–Computer Interface (HCI) criteria
	6.8.5 State completeness
	6.8.6 Data age requirement

	6.9 UML classes
	6.10 Use cases
	6.11 Specializations of PCS systems
	6.11.1 Multi-level architectures

	6.12 Using PCS systems with other systems
	6.13 Summary and conclusions
	Appendix 6.1: Message patterns in Process Control Systems

	7. Resource Allocation and Tracking (RAT) systems
	7.1 Introduction and objectives
	7.2 Background and history
	7.3 Motivational examples
	7.3.1 Help Desk System (HDS)
	7.3.2 Discrete manufacturing

	7.4 General applicability
	7.5 Goals, processes and activities
	7.6 Context diagram and system decomposition
	7.7 Stakeholders, viewpoints and requirements
	7.8 UML classes
	7.9 Use cases
	7.10 Specializations of RAT systems
	7.11 Using RAT systems with other systems
	7.12 Summary and conclusions

	8. Manufacturing (MAN) systems
	8.1 Introduction and objectives
	8.2 Background and history
	8.3 Motivational examples
	8.3.1 Compiler theory
	8.3.2 Graphics applications
	8.3.3 Human memory models

	8.4 General applicability
	8.5 Goals, processes and activities
	8.6 Context diagram and system decomposition
	8.7 Stakeholders, viewpoints and requirements
	8.7.1 Stakeholders and viewpoints
	8.7.2 Requirements

	8.8 UML classes
	8.9 Use cases
	8.10 Specializations of MAN systems
	8.11 Using MAN systems with other systems
	8.12 Summary and conclusions

	9. Access Control Systems (ACS)
	9.1 Introduction and objectives
	9.2 Background and history
	9.3 Motivational examples
	9.3.1 The Reference Monitor model

	9.4 General applicability
	9.5 Goals, processes and activities
	9.6 Context diagram and system decomposition
	9.7 Stakeholders, viewpoints and requirements
	9.8 UML classes
	9.9 Use cases
	9.10 Specializations of ACS
	9.10.1 Security models for Web-based applications
	9.10.2 Access control during design: the Proxy pattern

	9.11 Using ACS with other systems

	10. Lifecycle and composite models
	10.1 Introduction and objectives
	10.2 Background and history
	10.3 Motivational example: the Rent-a-machine system
	10.4 General applicability
	10.5 Goals, processes and activities
	10.6 Context diagram and system decomposition
	10.7 Stakeholders, viewpoints and requirements
	10.8 UML classes
	10.9 Use cases
	10.10 Specializations of LCM
	10.11 Using LCM systems with other systems
	10.12 Summary and conclusions


	PART III Applications (models)
	11. Project resource management system: Manpower Control (MPC) system
	11.1 Introduction and objectives
	11.2 Description and scope of problem
	11.3 Core processing and context diagram
	11.4 Requirements and use case analysis
	11.4.1 Functional requirements and use cases
	11.4.2 Non-functional requirements

	11.5 Validating use cases
	11.6 Class architecture
	11.7 Generalizations
	11.8 Summary and conclusions

	12. Home Heating System (HHS)
	12.1 Introduction and objectives
	12.2 Background and history
	12.2.1 Hatley–Pirbhai
	12.2.2 The Booch approach

	12.3 Description of problem
	12.4 Goals, processes and context
	12.5 System decomposition and PAC model
	12.6 Viewpoints and requirements analysis
	12.7 Use cases
	12.8 Validation efforts
	12.9 Creating statecharts
	12.10 Generalization efforts
	12.11 Summary and conclusions

	13. Elevator Control System (ELS)
	13.1 Introduction and objectives
	13.2 Domain categories and ELS
	13.3 A traditional object-oriented requirement speci.cation
	13.4 Re-engineering ELS: goals and processes
	13.5 Stakeholders and their requirements
	13.6 Requirements
	13.7 System decomposition of ELS
	13.8 PAC decomposition of ELS
	13.9 Major use cases
	13.9.1 Normal use cases
	13.9.2 Exceptional use cases

	13.10 Summary and conclusions
	Appendix 13.1: De.nitions

	14. Order Processing Systems (OPS)
	14.1 Introduction and objectives
	14.2 Customer Requirements Speci.cation (CRS): the product management vision of OPS
	14.2.1 Business concerns and stakeholders?viewpoints

	14.3 OPS as a lifecycle model
	14.3.1 Order Creation System (OCS)
	14.3.2 Order Realization System (ORS)
	14.3.3 Order Management System (OMS)

	14.4 Behavioural aspects
	14.4.1 Front Of.ce
	14.4.2 Back Of.ce
	14.4.3 Middle Of.ce
	14.4.4 External groups

	14.5 Collecting requirements from multiple stakeholder viewpoints
	14.5.1 Critical use cases

	14.6 Class architecture
	14.6.1 Class models and diagrams

	14.7 Design guidelines for OPS
	14.7.1 Data patterns

	14.8 Functional and non-functional requirements and their realization
	14.8.1 ISO 9126 revisited

	14.9 Database repository: an architectural style for data-driven systems
	14.10 Summary and conclusions
	Appendix 14.1: Documenting use cases
	Appendix 14.2: Some UML class diagrams

	15. Drink Vending Machine (DVM)
	15.1 Introduction and objectives
	15.2 Description of problem
	15.2.1 Scope and span of problem

	15.3 Goals, processes and context
	15.4 Use cases
	15.5 Creating an initial PAC model
	15.6 Class structure
	15.7 Interaction diagrams and interface discovery
	15.7.1 Sequence diagrams

	15.8 Summary and conclusions
	Appendix 15.1: Collaboration diagrams in a nutshell

	16. Multi-tasking lifecycle applications
	16.1 Introduction and objectives
	16.2 The problem domain
	16.2.1 General description of problem
	16.2.2 System stakeholders

	16.3 System features
	16.4 System architecture
	16.4.1 The PAC models

	16.5 Design issues: overview
	16.6 The proof of the pudding: enter the ACE library
	16.7 The challenge: applying the ACE library in the extrusion application
	16.8 Summary and conclusions
	Appendix 16.1: an introduction to multi-threading


	PART IV Domain architecture summary and 'how to use' documentation
	17. Summary of domain architectures
	17.1 Introduction and objectives
	17.2 Object Creational Systems (OCS)
	17.3 Object Alignment Systems (OAS)
	17.4 Object Behavioural Systems (OBS)
	17.4.1 MIS
	17.4.2 PCS
	17.4.3 ACS

	17.5 Keeping the domain architectures distinct and orthogonal
	17.5.1 MAN versus RAT
	17.5.2 MAN versus MIS
	17.5.3 MAN versus PCS
	17.5.4 MAN versus ACS
	17.5.5 RAT versus MIS
	17.5.6 RAT versus PCS
	17.5.7 RAT versus ACS
	17.5.8 MIS versus PCS
	17.5.9 MIS and PCS versus ACS

	17.6 Summary and conclusions

	18. Using domain architectures and analogical reasoning
	18.1 Introduction and objectives
	18.2 In which domain architecture does my application belong? The bird-watching method
	18.3 Focusing on essential system features: the framework method
	18.4 The de.ning-attribute view
	18.4.1 Advantages and disadvantages

	18.5 The prototype view
	18.5.1 Advantages and disadvantages

	18.6 The exemplar-based view
	18.6.1 Advantages and disadvantages

	18.7 Summary and conclusions
	Appendix 18.1: Analogical reasoning and learning by analogy


	Appendix 1. The Inquiry Cycle and related cognitive techniques
	A1.1 Introduction and objectives
	A1.2 Background and history
	A1.3 An introduction to the Inquiry Cycle model
	A1.3.1 Requirements documentation
	A1.3.2 Requirements discussion
	A1.3.3 Requirements evolution

	A1.4 Using the right questions
	A1.4.1 General applicability
	A1.5 The learning loop
	A1.6 Summary and conclusions

	Appendix 2. The Presentation-Abstraction-Control (PAC) pattern
	A2.1 Introduction and objectives
	A2.2 Motivation and background
	A2.2.1 A short history of objects
	A2.2.2 Subsuming object orientation in a broader context

	A2.3 Decomposition strategies
	A2.3.1 System decomposition and activity diagrams
	A2.3.2 System decomposition and context diagrams

	A2.4 PAC and object-oriented analysis
	A2.4.1 Entity classes
	A2.5 The relationship between PAC and UML
	A2.6 Summary and conclusions

	Appendix 3. Relationships with other models and methodologies
	A3.1 Introduction
	A3.2 Information hiding and the work of David Parnas
	A3.3 The Rummler-Brache approach
	A3.4 Michael Jackson's problem frames
	A3.5 The Hatley-Pirbhai method
	A3.6 The Garlan and Shaw architectural styles
	A3.7 System and design patterns
	A3.8 The Uni.ed Modelling Language (UML)
	A3.9 Viewpoint-based requirements engineering

	Appendix 4. The 'Hello World' example: the Simple Digital Watch (SDW)
	A4.1 Introduction
	A4.2 Features and description of problem
	A4.3 Goals and processes
	A4.4 Stakeholders, viewpoints and requirements
	A4.5 Context diagram and system decomposition
	A4.6 Use cases
	A4.7 UML classes
	A4.8 Statecharts

	Appendix 5. Using domain architectures: seven good habits
	References
	Index
	Team DDU



