Preface

The last two decennia have witnessed many advances in the area of software
development. The advent of object-oriented programming languages and modelling
languages such as Unified Modeling Language (UML) has increased our ability
as developers to design and realize large and enterprise-wide software systems.
However, software engineering, as a discipline seems to be lacking in its sup-
port for reference models that can be used in order to help developers create new
systems quickly and efficiently. The software development process is still a very
context-sensitive and idiosyncratic process. Whereas disciplines such as chemical
engineering and mathematics have developed domain models for a range of prob-
lems, the IT industry is in general lacking in such models. Software development
tends to be a very personal experience and in many cases how a system is to be
developed is a product of a single person’s insights. This is a potentially dangerous
state of affairs because there is no guarantee that the resulting model reflects the
problem domain well.

This book introduces a number of so-called models (we call them domain archi-
tectures) that act as ‘cookie-cutters’ or reference models for more specific real-life
applications. Working with domain architectures demands a shift in thinking because
when designing a new software system we try to categorize it as an instance sys-
tem of one or more domain architectures. Having done that we can reuse and
specialize the requirements, viewpoints and generic architecture to the specific sys-
tems. This results in massive reuse at the architectural and design levels while the
risk of failure is reduced because the reference models in this book are based in
real-life applications and experience. They have been used on real projects with
real customers.

The reference models can and should be used in much the same way as people
reason about the world around them. This is the Ausubel subsumption theory: when
developing software systems we relate new knowledge to relevant concepts and
propositions we already know.
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