Contents

Pre	face		XV
PART I Background and fundamentals		1	
1.	Intr	oducing and motivating domain architectures	3
	1.1	What is this book?	3
	1.2	Why have we written this book?	4
	1.3	For whom is this book intended?	4
	1.4	Why should I read this book?	4
	1.5	What is a domain architecture, really?	4
	1.6	The Datasim Development Process (DDP)	8
	1.7	The structure of this book	Ò
	1.8	What this book does <i>not</i> cover	10
2.	Don	nain architecture catalogue	11
	2.1	Introduction and objectives	11
	2.2	Management Information Systems (MIS) (Chapter 5)	13
	2.3	Process Control Systems (PCS) (Chapter 6)	16
	2.4	Resource Allocation and Tracking (RAT) systems (Chapter 7)	18
	2.5	Manufacturing (MAN) systems (Chapter 8)	19
	2.6	Access Control Systems (ACS) (Chapter 9)	20
	2.7	Lifecycle and composite models (Chapter 10)	21
3.	Soft	ware lifecycle and Datasim Development Process (DDP)	23
	3.1	Introduction and objectives	23
	3.2	The Software Lifecycle	24
	3.3	Reducing the scope	25

vi

	3.4	The requirements/architecture phase in detail	29
	3.5	The object-oriented analysis process	30
	3.6	Project cultures and DDP	33
		3.6.1 Calendar-driven projects	34
		3.6.2 Requirements-driven projects	34
		3.6.3 Documentation-driven style	35
		3.6.4 Quality-driven style	36
		3.6.5 Architecture-driven style	36
		3.6.6 Process-driven style and the DDP	37
	3.7	Summary and conclusions	38
4.	Fund	amental concepts and documentation issues	41
	4.1	Introduction and objectives	41
	4.2	How we document domain architectures	43
	4.3	Characteristics of ISO 9126 and its relationship with domain	
		architectures	44
	4.4	Documenting high-level artefacts	48
	4.5	Goals and core processes	48
	4.6	System context	50
	4.7	Stakeholders and viewpoints	50
		4.7.1 Documenting viewpoints	52
	4.8	Documenting requirements	54
	4.9	Defining and documenting use cases	54
	4.10	Summary and conclusions	55
	Appe	ndix 4.1: A critical look at use cases	55
PA	RT II	Domain architectures (meta models)	57
5.	Mana	agement Information Systems (MIS)	59
	5.1	Introduction and objectives	59
	5.2	Background and history	59
	5.3	Motivational examples	61
		5.3.1 Simple Digital Watch (SDW)	61
		5.3.2 Instrumentation and control systems	62
	5.4	General applicability	63
	5.5	Goals, processes and activities	64
	5.6	Context diagram and system decomposition	65
	5.7	Stakeholders, viewpoints and requirements	67
	5.8	UML classes	69
	5.9	Use cases	70

vii

	5.10	Specializations of MIS systems	71 72
	5.11	5.10.1 Example: Noise control engineering Using MIS systems with other systems	72 74
	5.12	Summary and conclusions	74 76
	3.12	Summary and conclusions	70
6.	Proce	ess Control Systems (PCS)	77
	6.1	Introduction and objectives	77
	6.2	Background and history	78
	6.3	Motivational examples	78
		6.3.1 Simple water level control	79
		6.3.2 Bioreactor	80
		6.3.3 Barrier options	81
	6.4	Reference models for Process Control Systems	83
		6.4.1 Basic components and variables	83
		6.4.2 Control engineering fundamentals	86
	6.5	General applicability	88
	6.6	Goals, processes and activities	89
	6.7	Context diagram and system decomposition	90
		6.7.1 Decomposition strategies	91
	6.8	Stakeholders, viewpoints and requirements	96
		6.8.1 Input and output variable completeness	97
		6.8.2 Robustness criteria	97
		6.8.3 Timing	98
		6.8.4 Human–Computer Interface (HCI) criteria	100
		6.8.5 State completeness	100
		6.8.6 Data age requirement	101
	6.9	UML classes	101
	6.10	Use cases	102
	6.11	Specializations of PCS systems	105
		6.11.1 Multi-level architectures	105
	6.12	Using PCS systems with other systems	106
	6.13	Summary and conclusions	107
	Appe	ndix 6.1: Message patterns in Process Control Systems	108
7.	Resou	urce Allocation and Tracking (RAT) systems	111
	7.1	Introduction and objectives	111
	7.2	Background and history	112
	7.3	Motivational examples	112
		7.3.1 Help Desk System (HDS)	113
		7.3.2 Discrete manufacturing	115
	7.4	General applicability	117

viii Contents

	7.5	Goals, processes and activities	118
	7.6	Context diagram and system decomposition	118
	7.7	Stakeholders, viewpoints and requirements	120
	7.8	UML classes	121
	7.9	Use cases	123
	7.10	Specializations of RAT systems	124
	7.11	Using RAT systems with other systems	125
	7.12	Summary and conclusions	126
8.	Manı	ufacturing (MAN) systems	127
	8.1	Introduction and objectives	127
	8.2	Background and history	128
	8.3	Motivational examples	130
		8.3.1 Compiler theory	130
		8.3.2 Graphics applications	132
		8.3.3 Human memory models	134
	8.4	General applicability	137
	8.5	Goals, processes and activities	138
	8.6	Context diagram and system decomposition	138
	8.7	Stakeholders, viewpoints and requirements	139
		8.7.1 Stakeholders and viewpoints	139
		8.7.2 Requirements	140
	8.8	UML classes	141
	8.9	Use cases	142
	8.10	Specializations of MAN systems	143
	8.11	Using MAN systems with other systems	144
	8.12	Summary and conclusions	144
9.	Acces	ss Control Systems (ACS)	147
	9.1	Introduction and objectives	147
	9.2	Background and history	148
	9.3	Motivational examples	148
		9.3.1 The Reference Monitor model	148
	9.4	General applicability	152
	9.5	Goals, processes and activities	152
	9.6	Context diagram and system decomposition	153
	9.7	Stakeholders, viewpoints and requirements	154
	9.8	UML classes	155
	99	Use cases	155

Contents

	9.10	Specializations of ACS	157
		9.10.1 Security models for Web-based applications	157
		9.10.2 Access control during design: the Proxy pattern	159
	9.11	Using ACS with other systems	162
10.	Lifecy	cle and composite models	163
	10.1	Introduction and objectives	163
	10.2	Background and history	164
	10.3	Motivational example: the Rent-a-machine system	164
	10.4	General applicability	168
	10.5	Goals, processes and activities	170
	10.6	Context diagram and system decomposition	171
	10.7	Stakeholders, viewpoints and requirements	171
	10.8	UML classes	172
	10.9	Use cases	173
		Specializations of LCM	174
		Using LCM systems with other systems	174
	10.12	Summary and conclusions	175
PA	RT III	Applications (models)	177
11.	Projec	ct resource management system: Manpower Control (MPC)	
	systen		179
	11.1	Introduction and objectives	179
	11.2	Description and scope of problem	180
	11.3	Core processing and context diagram	181
	11.4	Requirements and use case analysis	183
		11.4.1 Functional requirements and use cases	183
		11.4.2 Non-functional requirements	186
	11.5	Validating use cases	187
	11.6	Class architecture	189
	11.7	Generalizations	192
	11.8	Summary and conclusions	192
12.	Home	Heating System (HHS)	193
	12.1	Introduction and objectives	193
	12.2	Background and history	194
		12.2.1 Hatley–Pirbhai	194
		12.2.2. The Booch approach	197

x Contents

	12.3	Description of problem	197
	12.4	Goals, processes and context	197
	12.5	System decomposition and PAC model	200
	12.6	Viewpoints and requirements analysis	201
	12.7	Use cases	202
	12.8	Validation efforts	207
	12.9	Creating statecharts	209
		Generalization efforts	212
	12.11	Summary and conclusions	213
13.	Eleva	tor Control System (ELS)	215
	13.1	Introduction and objectives	215
	13.2	Domain categories and ELS	216
	13.3	A traditional object-oriented requirement specification	217
	13.4	Re-engineering ELS: goals and processes	220
	13.5	Stakeholders and their requirements	223
	13.6	Requirements	225
	13.7	System decomposition of ELS	227
	13.8	PAC decomposition of ELS	230
	13.9	Major use cases	232
		13.9.1 Normal use cases	232
		13.9.2 Exceptional use cases	233
	13.10	Summary and conclusions	235
	Apper	dix 13.1: Definitions	235
14.	Order	Processing Systems (OPS)	237
	14.1	Introduction and objectives	237
	14.2	Customer Requirements Specification (CRS): the product	
		management vision of OPS	239
		14.2.1 Business concerns and stakeholders' viewpoints	239
	14.3	OPS as a lifecycle model	240
		14.3.1 Order Creation System (OCS)	242
		14.3.2 Order Realization System (ORS)	243
		14.3.3 Order Management System (OMS)	244
	14.4	Behavioural aspects	245
		14.4.1 Front Office	246
		14.4.2 Back Office	246
		14.4.3 Middle Office	247
		14.4.4 External groups	247
	14.5	Collecting requirements from multiple stakeholder viewpoints	248
		14.5.1 Critical use cases	2/10

Contents

	14.6	Class architecture	250
		14.6.1 Class models and diagrams	250
	14.7	Design guidelines for OPS	252
		14.7.1 Data patterns	253
	14.8	Functional and non-functional requirements and their	
		realization	256
		14.8.1 ISO 9126 revisited	257
	14.9	Database repository: an architectural style for data-driven	250
	14.10	systems	258
		Summary and conclusions	259
		dix 14.1: Documenting use cases	259
	Appen	dix 14.2: Some UML class diagrams	261
15.	Drink	Vending Machine (DVM)	263
	15.1	Introduction and objectives	263
	15.2	Description of problem	264
		15.2.1 Scope and span of problem	265
	15.3	Goals, processes and context	266
	15.4	Use cases	268
	15.5	Creating an initial PAC model	269
	15.6	Class structure	270
	15.7	Interaction diagrams and interface discovery	271
		15.7.1 Sequence diagrams	271
	15.8	Summary and conclusions	278
	Appen	dix 15.1: Collaboration diagrams in a nutshell	278
16.	Multi-	tasking lifecycle applications	281
	16.1	Introduction and objectives	281
	16.2	The problem domain	282
		16.2.1 General description of problem	282
		16.2.2 System stakeholders	285
	16.3	System features	285
	16.4	System architecture	286
		16.4.1 The PAC models	289
	16.5	Design issues: overview	291
	16.6	The proof of the pudding: enter the ACE library	291
	16.7	The challenge: applying the ACE library in the extrusion	
		application	293
	16.8	Summary and conclusions	298
	Appen	dix 16.1: an introduction to multi-threading	298

xii Contents

	RT IV umenta	Domain architecture summary and 'how to use' ation	307
17.	Sumn	nary of domain architectures	309
	17.1	Introduction and objectives	309
	17.2	Object Creational Systems (OCS)	310
	17.3	Object Alignment Systems (OAS)	311
	17.4	Object Behavioural Systems (OBS)	312
		17.4.1 MIS	312
		17.4.2 PCS	313
		17.4.3 ACS	314
	17.5	Keeping the domain architectures distinct and orthogonal	315
		17.5.1 MAN versus RAT	316
		17.5.2 MAN versus MIS	317
		17.5.3 MAN versus PCS	317
		17.5.4 MAN versus ACS	317
		17.5.5 RAT versus MIS	317
		17.5.6 RAT versus PCS	318
		17.5.7 RAT versus ACS	318
		17.5.8 MIS versus PCS	318
		17.5.9 MIS and PCS versus ACS	318
	17.6	Summary and conclusions	319
18.	Using	domain architectures and analogical reasoning	321
	18.1	Introduction and objectives	321
	18.2	In which domain architecture does my application belong?	
		The bird-watching method	322
	18.3	Focusing on essential system features: the framework method	324
	18.4	The defining-attribute view	325
		18.4.1 Advantages and disadvantages	326
	18.5	The prototype view	327
		18.5.1 Advantages and disadvantages	328
	18.6	The exemplar-based view	329
		18.6.1 Advantages and disadvantages	330
	18.7	Summary and conclusions	331
	Apper	ndix 18.1: Analogical reasoning and learning by analogy	331
App	endix	1. The Inquiry Cycle and related cognitive techniques	335
	A1.1	Introduction and objectives	335
		Background and history	336

Contents	xii

A1.3	An introduction to the Inquiry Cycle model	336
	A1.3.1 Requirements documentation	336
	A1.3.2 Requirements discussion	337
	A1.3.3 Requirements evolution	337
A1.4	Using the right questions	338
	A1.4.1 General applicability	340
A1.5	The learning loop	341
A1.6	Summary and conclusions	342
Appendix	2. The Presentation-Abstraction-Control (PAC) pattern	345
A2.1	Introduction and objectives	345
A2.2	Motivation and background	346
	A2.2.1 A short history of objects	347
	A2.2.2 Subsuming object orientation in a broader context	348
A2.3	1 6	348
	A2.3.1 System decomposition and activity diagrams	350
	A2.3.2 System decomposition and context diagrams	350
A2.4	, , , , , , , , , , , , , , , , , , ,	352
	A2.4.1 Entity classes	355
	The relationship between PAC and UML	355
A2.6	Summary and conclusions	357
Appendix	3. Relationships with other models and methodologies	359
A3.1	Introduction	359
A3.2	Information hiding and the work of David Parnas	360
A3.3	The Rummler-Brache approach	361
A3.4	Michael Jackson's problem frames	363
A3.5	The Hatley-Pirbhai method	364
A3.6	The Garlan and Shaw architectural styles	365
A3.7	, , ,	366
A3.8	The Unified Modelling Language (UML)	367
A3.9	Viewpoint-based requirements engineering	367
	4. The 'Hello World' example: the Simple Digital Watch	
(SDW)		371
A4.1	Introduction	371
A4.2	1 1	371
A4.3	Goals and processes	372
	1	
A4.4	Stakeholders, viewpoints and requirements	373
A4.4 A4.5 A4.6	Stakeholders, viewpoints and requirements Context diagram and system decomposition	373 373 375

xiv		Contents
	A4.7 UML classes	375
	A4.8 Statecharts	375
	Appendix 5. Using domain architectures: seven good habits	379
	References	383
	Index	387