
This book is about building data-intensive Web applications. By this term, we refer
to Web sites for accessing and maintaining large amounts of structured data, typ-
ically stored as records in a database management system. Today, data-intensive
Web applications are the predominant kind of application found on the Web;
sites for online trading and e-commerce, institutional Web sites of private and
public organizations, digital libraries, corporate portals, community sites are all
examples of data-intensive Web applications.

The development of a data-intensive Web application is a multi-disciplinary
activity, which requires a variety of skills, necessary to address very heterogeneous
tasks, like the design of data structures for storing content, the conception of
hypertext interfaces for information browsing and content management, the
creation of effective presentation styles, the assembly of robust and high-
performance architectures, and the integration with legacy applications and
external services. The development and maintenance of data-intensive Web ap-
plications requires all the tools and techniques of software engineering, includ-
ing a well-organized software development process, appropriate design concepts
and notations, and guidelines on how to conduct the various activities.

By looking at the way in which data-intensive Web applications are built
today and at the tools available to developers, one realizes soon that the software
engineering principles and pragmatics are not exploited to their full potential. De-
signers often construct Web applications by applying the best practices and meth-
ods they have learned in developing other kinds of software systems, like
enterprise information systems and object-oriented applications. Such practices
work well for the “conventional” part of Web application development, for ex-
ample, the design of the data structures and of the business logic at the back-end,
but they do not address the specificity of a “Web” application, which is the de-
livery of content and services using an hypertextual front-end. This gap is partic-
ularly apparent in the design concepts and notations: when it comes to specifying
the front-end of their Web application, development teams resort to rather rudi-
mentary tools, like paper and pencil or HTML mock-ups. This situation, which we
have frequently witnessed also in very large organizations well equipped with
software engineering tools, demands for an adaptation of the software develop-
ment process, capable of addressing the characterizing features of Web applica-
tions. The Web application lifecycle should be built around a solid nucleus of

xxi

P r e f a c e



Web-centric concepts and notations, and supported by specific guidelines on how
to put such concepts to work.

The contribution of this book is the proposal of a mix of concepts, nota-
tions, and techniques for the construction of data-intensive Web applications,
which can be used by Web development teams to support all the activities of the
application lifecycle, from analysis to deployment and evolution.

The proposed mix blends traditional ingredients well known to developers,
like conceptual data design with the Entity-Relationship model and Use Case
specification with UML, with new concepts and methods for the design of hy-
pertexts, which are central to Web development. However, the value of the pro-
posed approach is not in the individual ingredients, but in the definition of a
systematic framework in which the activities of Web applications development
can be organized according to the fundamental principles of software engineer-
ing, and all tasks, including the more Web-centric ones, find the adequate sup-
port in appropriate concepts, notations, and techniques.

The distinguishing feature of this development framework is the emphasis
on conceptual modeling. Conceptual modeling has proven successful in many
software fields; in database design, where the Entity-Relationship model offers a
high-level and intuitive notation for communicating data requirements between
designers and non-technical people, and is the base for creating high quality data-
base schemas; in object-oriented applications, where notations like the Unified
Modeling Language have considerably raised the level at which developers docu-
ment and reason about their applications. We advocate that these benefits should
apply also to the design of data-intensive Web applications, which should be spec-
ified using a high-level, visual, and intuitive notation, easily communicable to
non-technical users, and helpful to the application implementers.

Therefore, this book proposes a high-level modeling language for hypertext
specification, called Web Modeling Language (WebML). In essence, WebML con-
sists of simple visual concepts for expressing a hypertext as a set of pages made
up of linked content units and operations, and for binding such content units and
operations to the data they refer to.

WebML follows the style of well-known conceptual modeling languages like
Entity-Relationship and UML: every concept has a graphical representation, and
specifications are diagrams. Therefore, the reader should not worry about the
need to learn yet another language. As for the Entity-Relationship constructs, also
WebML diagrams could be represented using the UML syntax, possibly with some
loss of conciseness, but not of expressive power.

However, we stress that concepts are more important than notations, and
that the methods for applying concepts are even more important. Therefore, in

xxii Preface



the book we guide the reader both in learning the needed modeling concepts,
Entity-Relationship and WebML, and in applying such concepts to the specifica-
tion and design of a Web application, through such activities as requirements spec-
ification, data design, and hypertext design. Moreover, despite the slant toward
conceptual modeling, we also focus upon the many problems of implementing
and deploying a data-intensive Web application. The first chapter and the last part
of the book are entirely devoted to technological matters, and show to the inter-
ested reader how to transform the conceptual design of a Web application into
software components running on the current Web and database technologies, in-
cluding HTTP, HTML, XML, XSL, relational databases and SQL, server side script-
ing languages and tag libraries, application servers, and caching architectures.

Last but not least, the book ends with a mention about CASE tools sup-
porting the proposed lifecycle, because the benefits of applying conceptual mod-
eling and a structured development process multiply, if adequate tools are
available. All the proposed notations fit perfectly in the commercial tool suites
popular among developers, like Entity-Relationship and UML editors and code
generators. In particular, WebML can be easily supported, either by representing
WebML diagrams using UML, or by exploiting WebML-aware tools, an example
of which is presented in the last chapter of the book.

Book Organization and Chapter Summaries

The book is structured in four parts. The first part introduces the technological
context in which development takes place; the second part presents the model-
ing languages used in the book, Entity-Relationship and WebML; the third part
defines the software development process; the fourth part focuses on the imple-
mentation of data-intensive Web applications on top of modern Web-enabled
architectures.

All chapters have a regular structure, with a motivational introduction that
states the problem treated in the chapter, a central part that defines the proposed
solution, and a conclusion, which summarizes the results. In the chapters de-
voted to the development process, the design steps are applied to a running case,
which is progressively followed from requirements analysis to implementation.

Part I, including Chapter 1, summarizes the technologies relevant to data-
intensive Web application development.

Chapter 1 contains a broad overview of the fundamental technologies em-
ployed in the construction of data-intensive Web applications. The chapter briefly
illustrates the basic protocol and languages of the Web (HTTP, HTML, and client-
side scripting and components); it focuses on XML, the new paradigm for content

Book Organization and Chapter Summaries xxiii



structuring and exchange, and on its collateral standards for document transfor-
mation (XSL and XQuery); then it discusses the second ingredient of data-inten-
sive Web applications, relational databases, and the associated query language
(SQL) and interoperability standards (ODBC and JDBC). Finally, it explains the
architectures and languages for building dynamic Web pages, including Java
servlets, server-side scripting languages such as ASP and JSP, tag libraries, and ap-
plication server architectures. The chapter ends with the discussion of multi-device
content publishing.

Part II, including Chapters 2–5, is dedicated to the presentation of the mod-
eling languages used in the book.

Chapter 2 describes the primitives of the Entity-Relationship data modeling
language. The fundamental elements of structure modeling are entities, defined as
containers of data elements, and relationships, defined as semantic associations
between entities. Entities have named properties, called attributes, with an asso-
ciated type. Entities can be organized in generalization hierarchies, and relation-
ships can be restricted by means of cardinality constraints. The chapter also shows
how to specify attributes and relationships whose content can be determined
from other data elements, by writing declarative expressions using the Object
Constraint Language (OCL).

Chapter 3 describes the WebML hypertext modeling language, which is
based on the notion of units, pages, and links. Units describe the elementary pieces
of content to be displayed, pages indicate how units should be assembled together,
and links describe the connections between units and/or pages. Multiple hyper-
texts, called site views, may be defined over the same content, to offer different
viewpoints to different users. The modeling primitives are introduced gradually,
using many examples inspired to frequently used hypertext configurations.

Chapter 4 describes the extension of the hypertext model for supporting
content management functions, like the update of personal information, the
filling of shopping carts, and so on. New constructs are introduced for repre-
senting operations, which are either predefined or generic. Predefined opera-
tions represent typical content management and utility functions normally
found in Web sites, like the creation, deletion, and modification of objects, the
user’s login and logout, and the delivery of e-mail messages; generic operations
represent black-box functions and enable the integration of WebML applications
with external services.

Chapter 5 concentrates on clarifying the meaning of hypertexts with an ar-
bitrary structure of pages, units, and links. The chapter also presents a simple but
complete high-level procedure for computing the content of hypertext pages,

xxiv Preface



which highlights the operational semantics of WebML and paves the way for the
discussion on how to implement hypertext constructs, which is the subject of Part
IV of the book.

Part III, including Chapters 6–9, presents the development process of data-in-
tensive Web applications.

Chapter 6 is an overview of the application lifecycle. It discusses the speci-
fication, design, and implementation activities required to build a data-intensive
Web application, by briefly describing the goals and tasks of each development
phase.

Chapter 7 focuses on requirement analysis, an activity dedicated to the col-
lection and specification of the application requirements, preliminary to the
modeling and design phases. Requirements collection focuses on identifying users
and groups, defining functional, data, and personalization requirements, as well
as on nonfunctional requirements about presentation, usability, performance,
availability, scalability, security, and maintainability. Functional requirements are
formalized by means of UML use case diagrams; the core concepts and site views
are expressed by means of a data dictionary and of site view maps; finally, visual
style guidelines are expressed in the form of interface mock-ups.

Chapter 8 addresses the activity of data design and shows the particular
flavor that this task assumes in the Web context. The data structure of Web
applications often presents a regular organization, in which several intercon-
nected sub-schemas can be recognized, each one centered on a “core entity” rep-
resenting a fundamental business object. As a consequence, the design process
assumes a regular shape too; it starts from the specification of the core concepts,
which form the backbone of the data schema, and proceeds iteratively by adding
four kinds of sub-schemas, which represent the internal components of core
concepts, the interconnections for supporting navigation, the auxiliary objects
for facilitating the access to the core content, and the concepts for supporting
personalization.

Chapter 9 describes the hypertext design activities. Design proceeds in a
top-down way: initially, a draft hypertext schema is obtained by partitioning each
site view identified during requirements analysis into areas, and assigning a set of
functions to each area, which support the browsing of core, access or intercon-
nection objects, or content management operations. Then, the draft schema of
each area is refined into a detailed schema, specified in WebML; in this phase, the
designer establishes the actual units, links, operations, and pages of each site view.
Hypertext design is facilitated by the usage of design patterns, which offer proved
solutions to typical page configuration requirements.

Book Organization and Chapter Summaries xxv



Part IV, comprising Chapters 10–14, is dedicated to the implementation and de-
ployment of data-intensive Web applications.

Chapter 10 concentrates on architecture design and is preliminary to the
discussion of implementation. It reviews the reference architectures that can be
used for building data-intensive Web applications and the criteria for choosing
among the alternative options. The chapter specifically addresses the nonfunc-
tional requirements of performance, security, availability, and scalability, and out-
lines the design decisions and trade-offs that must be faced to ensure the required
level of service. The chapter ends with a section devoted to performance evalua-
tion and caching, two important aspects of the design of Web architectures.

Chapter 11 deals with the mapping of conceptual data schemas onto the
physical data sources. Various alternative scenarios are discussed, with a different
degree of reuse of the existing schemas and content. The chapter starts by pre-
senting the standard mapping rules for transforming a given Entity-Relationship
schema into a relational database schema. Then it addresses the implementation
of the relational schema in the context of the corporate data infrastructure, a task
that presents several design choices and trade-offs, related to the problems of
schema integration, data integration, and replication management.

Chapter 12 describes how to encode WebML pages into server-side pro-
grams. As a reference, the explanation adopts the Java Server Pages (JSP) scripting
language and the JDBC database connection interface, but the discussion can be
easily adapted to different platforms, such as the Microsoft’s .NET architecture or
the PHP scripting language. The explanation of the implementation techniques
starts with simple page configurations, yielding relatively straightforward JSP page
templates, and then progresses to cover a wide spectrum of features of dynamic
hypertext pages.

Chapter 13 presents a more sophisticated implementation strategy, ex-
ploiting the Model View Controller (MVC) design pattern, which grants a well-
balanced distribution of responsibility among the software components that
collaborate to the page construction. In addition, the chapter illustrates other im-
plementation techniques suited to large-scale applications, such as the definition
of generic unit and operation services using XML descriptors, the development of
distributed business objects with the Enterprise JavaBeans standard, and the cen-
tralized management of presentation with the help of CSS and XSL rules.

Finally, Chapter 14 describes an example of CASE tool, called WebRatio Site
Development Studio, supporting the design of data-intensive Web applications
and the automatic generation of code from Entity Relationship and WebML spec-
ifications. The chapter illustrates the architecture and functions of the tool, which
covers the application lifecycle from data and hypertext design to their imple-

xxvi Preface

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



mentation. The annotated bibliography provides references to other tools sup-
porting the specification and delivery of Web applications.

Several appendices complete the book; they summarize the elements of the
WebML model, the syntax of WebML and of the Object Constraint Language,
and the implementation techniques for transforming hypertext specifications
into dynamic page templates and database queries.

Audience

This book has the ambitious objective of proposing a “paradigm shift” in the way
Web applications are developed, rooted in the tradition of conceptual modeling
and software engineering. It is directed not only to the IT specialists, but also to
all the professionals involved in the construction of a Web application, an audi-
ence as broad as the spectrum of problems faced by Web application developers.

To address this target, we have made efforts to purge the book from any un-
necessary formalism and academic discussion, and we have instead made inten-
sive use of practical and motivating examples for explaining every new concept
introduced to the reader. Therefore, the book should be approachable with lim-
ited effort by readers with a general background of database systems, software de-
velopment, and Web technologies. Throughout the chapters, modeling concepts
are shown at work, applied to the description of popular, real-life Web sites. In the
same way, development tasks are exemplified with the help of a running case,
taken from a real industrial project. In our intention, this book should emphasize
“showing” things, with the help of progressive examples, rather than “telling”
how things should be done.

The book could also be used in computer science courses dealing with data-
driven design methods, especially now that computer science schools and uni-
versities are more and more orienting their curricula towards Web technologies
and applications. Additional material for supporting professors in their lecturing
and students in doing course work is available on the book’s online Web site (see
below).

Online Resources

The book is associated with several online resources. The Web site http://
www.webml.org includes a variety of materials dedicated to model-driven Web
development and to WebML, including examples of hypertext modeling, tech-
nical and research papers, teaching materials, and resources for developers (for
instance, stencils for the popular Microsoft Visio diagram editor, which can be

Online Resources xxvii



used to draw WebML diagrams quickly). In particular, the section http://www.
webml.org/book is dedicated to this book. It contains the full text of the JSP pro-
grams discussed in Chapters 12 and 13, and a number of exercises, some of which
accompanied by solutions. An entry form in the Web site permits qualified in-
structors to contact the authors, to obtain further high quality and up-to-date
teaching materials.

The Web site http://www.webratio.com describes WebRatio Site Develop-
ment Studio, the CASE tool presented in Chapter 14; an evaluation program is
available for trying the software, and academic licenses are granted upon request
to teachers willing to use the tool in their classrooms.

Background

The model-driven approach to Web application development at the base of this
book is the result of more than five years of research at Politecnico di Milano, the
largest Italian IT School, accompanied by an intense development activity in the
industry. The first research prototype of a model-driven CASE tool for Web ap-
plications, called AutoWeb, was designed by Piero Fraternali and Paolo Paolini
between 1996 and 1998. The tool, operational since 1997, has been used to de-
velop several Web applications, and has demonstrated the possibility of au-
tomating the construction of data-intensive Web sites specified with a high level
conceptual language.

WebML was conceived in the context of the Esprit project “Web-Based
Intelligent Information Infrastructures” (W3I3, 1998–2000), supported by the
European Community, with the participation of five partners (Politecnico di
Milano and TXT e-solutions from Italy, KPN Research from Holland, Digia Inc.
from Finland, Otto Versand from Germany); the project delivered a prototype de-
velopment environment, called ToriiSoft. Since 1999, WebML has been used for
the development of industrial Web applications, both inside research contracts
with companies such as Microsoft and Cisco Systems, and in industrial projects
with companies like TXT e-solutions and Acer Europe. In the fall 2001, a team of
WebML designers and developers founded a start-up company with the goal of
further developing, distributing, and marketing WebRatio Site Development
Studio, a tool suite based on WebML.

Acknowledgments

We acknowledge the work and dedication of a huge number of developers, re-
searchers, and students, who have contributed to the design of WebML and to the

xxviii Preface



subsequent development of AutoWeb, Toriisoft, and WebRatio. We would like to
thank, among others, Fabio Surini, Nicola Testa, Paolo Cucco, Roberto Acerbis,
Stefano Butti, Claudio Greppi, Carlo Conserva, Fulvio Ciapessoni, Giovanni Tof-
fetti, Marco Tagliasacchi, Andrea Rangone, Paolo Paolini, Stefano Paraboschi,
Ioana Manolescu, Andrea Maurino, Marco Guida, Giorgio Tornielli, Alvise Braga
Illa, Wim Timmerman, Pekka Sivonen, Stefan Liesem, Ingo Klapper, Daniel
Schwabe, and Graham Robson.

Special thanks to Adam Bosworth, who was one of the first people to ap-
preciate our effort to “change the way in which people think of the Web devel-
opment.” We owe to him many precious technical discussions, conducted on
both sides of the Atlantic.

We thank Gianpiero Morbello, Massimo Manzari, and Emanuele Tosetti
from Acer for permission to use the Acer-Euro application throughout Parts III
and IV of the book.

Many thanks to the people of the CISCO IKF team, including Mike Kirk-
wood, Shirley Wong, Deepa Gopinat, Seema Yazdani, and Irene Sklyar. These
people really know what a “large” Web application is!

We are also deeply indebted to Prahm Mehra and Paolo Atzeni, who assisted
us with extremely careful comments and annotations, which greatly helped us in
the revision of the manuscript.

Acknowledgments xxix




