
Contents
1. Preface
2. Introduction
3. Language
4. Techniques
5. Windows Techniques
6. Software Project
7. Appendix

Preface

Why This Book?
During the first four month of 1994 I was presented with a wonderful

opportunity. My old University in Wroclaw, Poland, invited me to give two
courses for the students of Computer Physics. The choice of topics was left
entirely to my discretion. I knew exactly what I wanted to teach...

My work at Microsoft gave me the unique experience of working on large
software projects and applying and developing state of the art design and
programming methodologies. Of course, there are plenty of books on the
market that talk about design, programming paradigms, languages, etc.
Unfortunately most of them are either written in a dry academic style and are
quite obsolete, or they are hastily put together to catch the latest vogue. There
is a glut of books teaching programming in C, C++ and, more recently, in Java.
They teach the language, all right, but rarely do they teach programming.

We have to realize that we are witnessing an unprecedented explosion of
new hardware and software technologies. For the last twenty years the power of
computers grew exponentially, almost doubling every year. Our software
experience should follow this exponential curve as well. Where does this leave
books that were written ten or twenty years ago? And who has time to write
new books? The academics? The home programmers? The conference crowd?
What about people who are active full time, designing and implementing state of
the art software? They have no time!

In fact I could only dream about writing this book while working full time at
Microsoft. I had problems finding time to share experiences with other teams
working on the same project. We were all too busy writing software. And then I
managed to get a four-month leave of absence. This is how this book started.

Teaching courses to a live, demanding audience is the best way of
systematizing and testing ideas and making fast progress writing a book. The
goal I put forward for the courses was to prepare the students for jobs in the
industry. In particular, I asked myself the question: If I wanted to hire a new
programmer, what would I like him to know to become a productive member of
my team as quickly as possible?

For sure, I would like such a person to know
• C++ and object oriented programming.
• Top-down design and top-down implementation techniques.
• Effective programming with templates and C++ exceptions.
• Team work.

He (and whenever I use the pronoun he, I mean it as an abbreviation for he
or she) should be able to write reliable and maintainable code, easy to
understand by other members of the team. The person should know advanced

 2

programming techniques such as synchronization in a multithreaded
environment, effective use of virtual memory, debugging techniques, etc.

Unfortunately, most college graduates are never taught this kind of
"industrial strength" programming. Some universities are known to produce first
class computer hackers (and seem to be proud of it!). What's worse, a lot of
experienced programmers have large holes in that area of their education. They
don't know C++, they use C-style programming in C++, they skip the design
stage, they implement bottom-up, they hate C++ exceptions, and they don't
work with the team. The bottom line is this: they waste a lot of their own time
and they waste a lot of others' time. They produce buggy code that's difficult to
maintain.

So who are you, the reader of this book? You might be a beginner who
wants to learn C++. You might be a student who wants to supplement his or
college education. You might be a new programmer who is trying to make a
transition from the academic to the industrial environment. Or you might be a
seasoned programmer in search of new ideas. This book should satisfy you no
matter what category you find yourself in.

 3

	.RO Release (�Contents
	Preface
	Introduction
	Language
	Techniques
	Software Project

	Language
	Objects and Scopes
	Global scope
	Local scope
	Embedded objects
	Inheritance
	Member functions and Interfaces
	Member function scope
	Types
	Summary
	Word of Caution
	Exercises
	Abstract Data Types
	Exercises

	Arrays and References
	References
	Stack-based calculator
	Functional Specification
	Design
	Stubbed Implementation
	Implementation
	Calculator: Implementation
	Input: Implementation
	The Makefile

	Exercises

	Pointers
	Pointers
	Pointers vs. References
	Pointers and Arrays
	Exercises
	Pointers and Dynamic Memory Allocation
	Dynamic Data Structures
	Dynamic Stack
	Linked List
	String Table
	String Buffer
	Table Lookup
	Hash Table
	Test

	Exercises

	Polymorphism
	Polymorphism
	The Meaning of is-a
	Parse Tree
	Exercises

	Small Software Project
	Software Project
	Specification
	Stubbed Implementation
	Expanding Stubs
	Final Implementation. Not!
	Scanner
	Symbol Table
	Store
	Function Table
	Nodes
	Parser
	Main
	Initialization of Aggregates
	Exercises
	Operator overloading
	Passing by Value
	Value Semantics

	Techniques
	Techniques
	Code Review 1: The Cleanup
	Improving Code Grouping
	Decoupling the Output
	Fighting Defensive Programming
	A Case of Paranoid Programming
	Fringes
	Improving Communication Between Classes
	Correcting Design Flaws
	Code Review 2: Hiding Implementation Details
	Using Embedded Classes
	Combining Classes
	Combining Things using Namespaces
	Hiding Constants in Enumerations
	Hiding Constants in Local Variables

	Code Review 3: Sharing
	Isolating Global Program Parameters
	Testing Boundary Conditions
	Templates
	Code Review 4: Removing Limitations
	Dynamic Array
	Separating Functionality into New Classes
	Standard Vector

	Code Review 5: Resource Management
	Exceptions
	Stack Unwinding
	Resources
	Ownership of Resources
	Access to Resources
	Smart Pointers
	Ownership Transfer: First Attempt
	Ownership Transfer: Second Attempt
	Safe Containers
	Iterators
	Error Propagation
	Conversion
	Conclusion
	Making Use of the Standard Template Library
	Reference Counting and Copy-On-Write
	End of Restrictions
	Exploring Streams

	Code Review 7: Serialization and Deserialization
	The Calculator Object
	Command Parser
	Serialization and Deserialization
	In-Memory (De-) Serialization
	Multiple Inheritance
	Transactions
	Transient Transactions
	Persistent Transactions
	The Three-File Scheme
	The Mapping-File Scheme

	Overloading operator new
	Class-specific new
	Caching
	Bulk Allocation
	Array new

	Global new
	Macros
	Tracing Memory Leaks
	Debug Output
	Placement new

	Windows Techniques
	Introduction
	Of Macros and Wizards
	Programming Paradigm
	Hello Windows!
	Encapsulation

	Controlling Windows through C++
	Creating a Namespace
	Model-View-Controller
	Exception Specification
	Cleanup

	Painting
	Application Icon
	Window Painting and the View Object
	The Canvas
	The WM_PAINT Message
	The Model
	Capturing the Mouse
	Adding Colors and Frills
	Stock Objects

	Windows Application
	Porting the Calculator to Windows
	User Interface
	Child Windows
	Windows Controls
	Dialogs
	Commands and Menus
	Dynamic Menus
	Exercises

	Software Project
	About Software
	Design Strategies
	Team Work
	Implementation Strategies
	About Software
	Complexity
	The Fractal Nature of Software
	The Living Project
	The Living Programmer

	Design Strategies
	Top-Down Object Oriented Design
	Model-View-Controller
	Documentation
	Requirement Specification
	Architecture Specification

	Team Work
	Productivity
	Team Strategies

	Implementation Strategies
	Global Decisions
	Top-Down Object Oriented Implementation
	Inheriting Somebody Else's Code
	Multi-platform development
	Program Modifications
	Testing
	Regression Testing
	Stress Testing

