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Preface 

Why This Book? 
During the first four month of 1994 I was presented with a wonderful 

opportunity. My old University in Wroclaw, Poland, invited me to give two 
courses for the students of Computer Physics. The choice of topics was left 
entirely to my discretion. I knew exactly what I wanted to teach...  

My work at Microsoft gave me the unique experience of working on large 
software projects and applying and developing state of the art design and 
programming methodologies. Of course, there are plenty of books on the 
market that talk about design, programming paradigms, languages, etc. 
Unfortunately most of them are either written in a dry academic style and are 
quite obsolete, or they are hastily put together to catch the latest vogue. There 
is a glut of books teaching programming in C, C++ and, more recently, in Java. 
They teach the language, all right, but rarely do they teach programming.  

We have to realize that we are witnessing an unprecedented explosion of 
new hardware and software technologies. For the last twenty years the power of 
computers grew exponentially, almost doubling every year. Our software 
experience should follow this exponential curve as well. Where does this leave 
books that were written ten or twenty years ago? And who has time to write 
new books? The academics? The home programmers? The conference crowd? 
What about people who are active full time, designing and implementing state of 
the art software? They have no time!  

In fact I could only dream about writing this book while working full time at 
Microsoft. I had problems finding time to share experiences with other teams 
working on the same project. We were all too busy writing software. And then I 
managed to get a four-month leave of absence. This is how this book started.  

Teaching courses to a live, demanding audience is the best way of 
systematizing and testing ideas and making fast progress writing a book. The 
goal I put forward for the courses was to prepare the students for jobs in the 
industry. In particular, I asked myself the question: If I wanted to hire a new 
programmer, what would I like him to know to become a productive member of 
my team as quickly as possible?  

For sure, I would like such a person to know  
• C++ and object oriented programming.  
• Top-down design and top-down implementation techniques.  
• Effective programming with templates and C++ exceptions.  
• Team work.  

He (and whenever I use the pronoun he, I mean it as an abbreviation for he 
or she) should be able to write reliable and maintainable code, easy to 
understand by other members of the team. The person should know advanced 
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programming techniques such as synchronization in a multithreaded 
environment, effective use of virtual memory, debugging techniques, etc.  

Unfortunately, most college graduates are never taught this kind of 
"industrial strength" programming. Some universities are known to produce first 
class computer hackers (and seem to be proud of it!). What's worse, a lot of 
experienced programmers have large holes in that area of their education. They 
don't know C++, they use C-style programming in C++, they skip the design 
stage, they implement bottom-up, they hate C++ exceptions, and they don't 
work with the team. The bottom line is this: they waste a lot of their own time 
and they waste a lot of others' time. They produce buggy code that's difficult to 
maintain.  

So who are you, the reader of this book? You might be a beginner who 
wants to learn C++. You might be a student who wants to supplement his or 
college education. You might be a new programmer who is trying to make a 
transition from the academic to the industrial environment. Or you might be a 
seasoned programmer in search of new ideas. This book should satisfy you no 
matter what category you find yourself in.  
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