Preface

Prigamng 1 - lwee ol

Today, the ANSI C++ programming language is widely used throughout the world in
both academia and industry. In many educational institutions it is the language of
choice for a first programming course and for a language to be used for computer sci-
ence instruction. A key reason for this is that C++ has drifted down the curriculum
from more advanced courses to more introductory courses. Further, C++ comes with
many useful libraries, and is supported by sophisticated integrated environments. It is
a language that efficiently supports object-oriented programming (OOP) the dominant
contemporary programming methodology.

C++ by Dissection presents a thorough introduction to the programming process by
carefully developing working programs to illuminate key features of the C++ program-
ming language. Program code is explained in an easy-to-follow, careful manner through-
out. The code has been tested on several platforms and is found on the bundled CD-
rom accompanying this text. The code in C++ By Dissection can be used with most C++
systems, including those found in operating systems such as MacOS, MS-DOS, 0S/2,
UNIX, and Windows.

C++, invented at Bell Labs by Bjarne Stroustrup in the mid-1980s, is a powerful, mod-
ern, successor language to C. C++ adds to C the concept of class, a mechanism for pro-
viding user-defined types, also called abstract data types. C++ supports object-oriented
programming by these means and by providing inheritance and runtime type binding.



Ira Pohl’s C++ by Dissection Dissections vii

Dissections

This book presents readers with a clear and thorough introduction to the programming
process by carefully developing working C++ programs, using the method of dissection.
Dissection is a unique pedagogical tool first developed by the author in 1984 to illumi-
nate key features of working code. A dissection is similar to a structured walk-through
of the code. Its intention is to explain to the reader newly encountered programming
elements and idioms as found in working code. Programs and functions are explained
in an easy-to-follow step-by-step manner. Key ideas are reinforced throughout by use in
different contexts.

No Background Assumed

This book assumes no programming background and can be used by students and first
time computer users. Experienced programmers not familiar with C++ will also benefit
from the carefully structured presentation of the C++ language. For student use, the
book is intended as a first course in computer science or programming.

It is suitable for a CS1 course or beginning programming course for other disciplines.
Each chapter presents a number of carefully explained programs, which lead the stu-
dent in a holistic manner to ever-improving programming skills. From the start, the stu-
dent is introduced to complete programs, and at an early point in the text is introduced
to writing functions as a major feature of structured programming. The function is to
the program as the paragraph is to the essay. Competence in writing functions is the
hallmark of the skilled programmer and hence is emphasized. Examples and exercises
are plentiful in content and level of difficulty. They allow instructors to pick assign-
ments appropriate to their audiences.



Ira Pohl’s C++ by Dissection Special Features viii

Special Features

C++ by Dissection: The Essentials of C++ Programming incorporates a number of special
features:

= A CD-Rom with a working compiler.

= A website with and the full electronically searchable text of this book. Also included
are active links to useful web-sites and complete working code for this text

= Software engineering practice is described throughout

= Dr. P’s prescriptions are concise programming tips provided for the beginner for
each chapter

= Early explanation of simple recursion to reflect its earlier introduction in beginning
computer science courses

= Coverage of program correctness and type-safety

= In-depth explanation of functions and pointers because these concepts are typically
stumbling blocks for the beginner

= Object-oriented programming concepts are emphasized
= Generic programming and STL are carefully described

= UML diagrams are introduced as an aid to understanding object-oriented program-
ming

= Comparison to Java, optional Java exercises and coordinating references to java by
Dissection (with Charlie McDowell)

= Active links to online code by clicking on the infile line above each major program
section.

= Active links to online sites via clicking on blue underlined text.

Chapter Features

Each chapter contains the following pedagogical elements:

Dissections. Major elements of the important example programs are explained by the
method of dissection. This step-by-step discussion of new programming ideas helps the
reader encountering these ideas for the first time to understand them.

Object-oriented programming. The reader is led gradually to the object-oriented style.
Chapter 4, Classes and Abstract Data Types, introduces classes, which are the basic
mechanism for producing modular programs and implementing abstract data types.
Class variables are the objects being manipulated. Chapter 8, Inheritance and OOP,
develops inheritance and virtual functions, two key elements in this paradigm. Chapter
11, OOP Using C++, discusses OOP programming philosophy. This book develops in the
programmer an appreciation of this point of view.


http://www.cse.ucsc.edu/~pohl

Ira Pohl’s C++ by Dissection Classroom Usage ix

Programming Style and Software Engineering. Programming style and software method-
ology is stressed throughout. Important concepts such as structured branching state-
ments, nested flow of control, top-down design, and object-oriented programming are
presented early in the book. A consistent and proper coding style is adopted from the
beginning with careful explanation as to its importance and rationale. The coding style
used in the book is one commonly used by working programming professionals in the
C++ community.

Working Code. Right from the start the student is introduced to full working programs.
With the executable code, the student can better understand and appreciate the pro-
gramming ideas under discussion. Many programs and functions are explained through
dissections. Variations on programming ideas are often presented in the exercises.

Common Programming Errors. Many typical programming bugs, along with techniques
for avoiding them, are described. Much of the frustration of learning a programming
language is caused by encountering obscure errors. Many books discuss correct code
but leave the reader to a trial-and-error process for finding out about bugs. This book
explains how typical errors in C++ are made and what must be done to correct them.

Dr. P’s Prescriptions. A series of programming tips is based on wide experience. A con-
cise rationale is given for each tip.

Comparison to Java. An optional section describes the programming elements of Java
that are comparable to the C++ examples. Exercises supporting these sections are
included as well. For the most part, C++ and Java have equivalent elements. The text
aids the student already conversant in Java to migrate to C++. Also the C++ student who
later takes up Java will benefit from this section. Furthermore, as the book is a compan-
ion volume to Java by Dissection (with Charlie McDowell) the reader has access to com-
plete explanations of the Java concepts fully utilizing this book’s pedagogy.

Summary. A succinct list of points covered in the chapter serves as a review for the
reader, reinforcing the new ideas that were presented in the chapter.

Exercises. The exercises test the student’s knowledge of the language. Many exercises
are intended to be done interactively while reading the text. This encourages self-paced
instruction by the reader. In addition to exercising features of the language, some exer-
cises look at a topic in more detail, and others extend the reader’s knowledge to an
advanced area of use.

Classroom Usage

This book can be used as a text in a one-semester course that teaches students how to
program. Chapters 1 through 5 cover the C++ programming language through the use
of arrays, pointers, and basic object programming. A second-semester course can be
devoted to more advanced data types, OOP, generic programming and STL, file process-
ing, and software engineering as covered in Chapters 6 through 11. In a course designed
for students who already have some knowledge of programming, not necessarily in
C++, the instructor can cover all the topics in the text. This book can also be used as a
text in other computer science courses that require the student to use C++. In a compar-
ative language course, it can be used with companion volumes for C, Java, and C# that



Ira Pohl’s C++ by Dissection Interactive Environment X

follow the same dissection approach and share many of the same examples done
uniquely in each language.

Interactive Environment

This book is written explicitly for an interactive environment. Experimentation via key-
board and screen is encouraged throughout. For PCs, there are many vendors that sup-
ply interactive C++ systems, including Borland, IBM, Metroworks, Microsoft, and
Symantec.

Professional Use

While intended for the beginning programmer, C++ by Dissection: The Essentials of C++
Programming is a friendly introduction to the entire language for the experienced pro-
grammer as well. In conjunction with A Book on C, Fourth Edition by Al Kelley and Ira
Pohl (Addison Wesley Longman, Inc., Reading, MA, 1998, ISBN 0-201183994), the com-
puter professional will gain a comprehensive understanding of both languages. As a
package, the two books offer an integrated treatment of the C/C++ programming lan-
guage and its use that is unavailable elsewhere. Furthermore, in conjunction with Java
by Dissection by Ira Pohl and Charlie McDowell (Addison Wesley Longman, Inc., Reading,
MA, 1999, ISBN 0-201-61248-8), the student or professional is also given an integrated
treatment of the object-oriented language Java.

This book is the basis of many on-site professional training courses given by the author,
who has used its contents to train professionals and students in various forums since
1986. The text is the basis for Web-based training in C++ available from www.digi-
talthink.com.

Supplements

Support materials are available to instructors adopting this textbook for classroom use
and include the following:

= Solutions to exercises
= Code for example programs
= Powerpoint slides of all the figures

Please check on-line information for this book at www.aw.com/cssupport for more
information on obtaining these supplements.



http://www.digitalthink.com
http://www.digitalthink.com
http://www.aw.com/cssupport

Ira Pohl’s C++ by Dissection AcknowTledgments Xi

Acknowledgments

Our special thanks go to Uwe F. Mayer, George Belotsky, and Bruce Montague, who were
careful readers of the technical content of this work and suggested numerous improve-
ments, without being responsible for my errors. Thanks to our reviewers, Charles
Anderson, Colorado state University; Parris Egbert, Brigham Young University; Chris
Eagle, Naval Postgraduate School; Nigel Gwee, Louisiana State University; Stephen P.
Leach, Florida State University; and Steven C. Shaffer, Penn State University. Thanks also
to John dePillis, Debra Dolsberry and Laura Pohl who developed and drew many of the
cartoons. Most importantly further thanks to Debra Dolsberry, who acted as the chief
technical editor for much of the material in this book and the CD-Rom. In addition, she
was largely responsible for using FrameMaker to create files suitable for typesetting
this book. Thanks also to Charlie McDowell and Al Kelley for writing companion vol-
umes in C and Java.

We would also like to thank Maite Suarez-Rivas, Acquisitions Editor, Katherine Harutu-
nian, Project Editor, and Patty Mahtani, Associate Managing Editor for their enthusiasm,
support, and encouragement; and we would like to thank Caroline Roop and Sally Boy-
lan at Argosy, for the careful attention to the production of this book.

Ira Pohl
University of California, Santa Cruz



	Preface
	Dissections
	No Background Assumed
	Special Features
	Chapter Features
	Classroom Usage
	Interactive Environment
	Professional Use
	Supplements
	Acknowledgments

	Table of Contents
	A First Program
	Problem Solving: Recipes
	1.2.1 Algorithms—Being Precise

	Implementing Our Algorithm in C++
	Software Engineering: Style
	Common Programming Errors
	Writing and Running a C++ Program
	1.6.1 Interrupting a Program
	1.6.2 Typing an End-of-File Signal

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Writing an ANSI C++ Program
	Getting Ready to Program
	Program Elements
	2.1.1 Comments
	2.1.2 Keywords
	2.1.3 Identifiers
	2.1.4 Literals
	2.1.5 Operators and Punctuators

	Input/Output
	Program Structure
	2.3.1 Redirection

	Simple Types
	2.4.1 Initialization

	The Traditional Conversions
	Enumeration Types
	2.6.1 typedef Declarations

	Expressions
	2.7.1 Precedence and Associativity of Operators
	2.7.2 Relational, Equality, and Logical Operators

	Statements
	2.8.1 Assignment and Expressions
	2.8.2 The Compound Statement
	2.8.3 The if and if-else Statements
	2.8.4 The while Statement
	2.8.5 The for Statement
	2.8.6 The do Statement
	2.8.7 The break and continue Statements
	2.8.8 The switch Statement
	2.8.9 The goto Statement

	Software Engineering: Debugging
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Native Types and Statements
	Functions, Pointers, and Arrays
	Functions
	Function Invocation
	Function Definition
	The return Statement
	Function Prototypes
	Call-By-Value
	Recursion
	Default Arguments
	Functions as Arguments
	Overloading Functions
	Inlining
	3.11.1 Software Engineering: Avoiding Macros

	Scope and Storage Class
	3.12.1 The Storage Class auto
	3.12.2 The Storage Class extern
	3.12.3 The Storage Class register
	3.12.4 The Storage Class static
	3.12.5 Header Files and Linkage Mysteries

	Namespaces
	Pointer Types
	3.14.1 Addressing and Dereferencing
	3.14.2 Pointer-Based Call-By-Reference

	Reference Declarations
	The Uses of void
	Arrays
	3.17.1 Subscripting
	3.17.2 Initialization

	Arrays and Pointers
	Passing Arrays to Functions
	Problem Solving: Random Numbers
	Software Engineering: Structured Programming
	Core Language ADT: char* String
	Multidimensional Arrays
	Operators new and delete
	3.24.1 Vector Instead of Array
	3.24.2 String Instead of char*

	Software Engineering: Program Correctness
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises
	The Aggregate Type class and struct
	Member Selection Operator
	Member Functions
	Access: Private and Public
	Classes
	Class Scope
	4.6.1 Scope Resolution Operator
	4.6.2 Nested Classes

	An Example: Flushing
	The this Pointer
	static Members
	const Members
	4.10.1 Mutable Members

	A Container Class Example: ch_stack
	Software Engineering: Class Design
	4.12.1 Trade-Offs in Design
	4.12.2 Unified Modeling Language (UML) and Design

	Dr. P’s Prescriptions
	C++ Compared with Java
	Advanced Topics
	4.15.1 Pointer to Class Member
	4.15.2 Unions
	4.15.3 Bit Fields

	Summary
	Review Questions
	Exercises

	Classes and Abstract Data Types
	Classes with Constructors
	5.1.1 The Default Constructor
	5.1.2 Constructor Initializer
	5.1.3 Constructors as Conversions
	5.1.4 Improving the point Class
	5.1.5 Constructing a Stack
	5.1.6 The Copy Constructor

	Classes with Destructors
	Members That Are Class Types
	Example: A Singly Linked List
	Strings Using Reference Semantics
	Constructor Issues and Mysteries
	5.6.1 Destructor Details
	5.6.2 Constructor Pragmatics

	Polymorphism Using Function Overloading
	ADT Conversions
	Overloading and Signature Matching
	Friend Functions
	Overloading Operators
	Unary Operator Overloading
	Binary Operator Overloading
	Overloading the Assignment Operator
	Overloading the Subscript Operator
	Overloading Operator () for Indexing
	Overloading << and >>
	Overloading ->
	Overloading new and delete
	More Signature Matching
	Software Engineering: When to Use Overloading
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Ctors, Dtors, Conversions, and Operator Overloading
	Templates and Generic Programming
	Template Class stack
	Function Templates
	6.2.1 Signature Matching and Overloading
	6.2.2 How to Write a Simple Function: square()

	Generic Code Development: Quicksort
	6.3.1 Converting to a Generic quicksort()

	Class Templates
	6.4.1 Friends
	6.4.2 Static Members
	6.4.3 Class Template Arguments
	6.4.4 Default Template Arguments
	6.4.5 Member Templates

	Parameterizing the Class vector
	Using STL: string, vector, and complex
	6.6.1 string and basic_string<>
	6.6.2 vector<> in STL
	6.6.3 Using complex<>
	6.6.4 limits and Other Useful Templates

	Software Engineering: Reuse and Generics
	6.7.1 Debugging Template Code
	6.7.2 Special Considerations
	6.7.3 Using typename

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Standard Template Library
	A Simple STL Example
	Containers
	7.2.1 Sequence Containers
	7.2.2 Associative Containers
	7.2.3 Container Adaptors

	Iterators
	7.3.1 Iterators for istream and ostream
	7.3.2 Iterator Adaptors

	Algorithms
	7.4.1 Sorting Algorithms
	7.4.2 Nonmutating Sequence Algorithms
	7.4.3 Mutating Sequence Algorithms
	7.4.4 Numerical Algorithms

	Numerical Integration Made Easy
	STL: Function Objects
	7.6.1 Building a Function Object
	7.6.2 Function Adaptors

	Allocators
	Software Engineering: STL Use
	7.8.1 Syntax Bugs

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Inheritance and OOP
	A Derived Class
	8.1.1 More Unified Modeling Language (UML)

	A Student ISA Person
	Virtual Functions: Dynamic Determination
	8.3.1 Overloading and Overriding Confusion
	8.3.2 A Canonical Example: Class shape

	Abstract Base Classes
	Templates and Inheritance
	Multiple Inheritance
	RTTI and Other Fine Points
	8.7.1 Finer Points

	Software Engineering: Inheritance and Design
	8.8.1 Subtyping Form
	8.8.2 Code Reuse

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Input/Output
	The Output Class ostream
	Formatted Output and iomanip
	User-Defined Types: Output
	The Input Class istream
	Files
	Using Strings as Streams
	The Functions and Macros in ctype
	Using Stream States
	Mixing I/O Libraries
	Software Engineering: I/O
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Exceptions and Program Correctness
	Using the assert Library
	C++ Exceptions
	Throwing Exceptions
	10.3.1 Rethrown Exceptions
	10.3.2 Exception Expressions

	try Blocks
	Handlers
	Converting Assertions to Exceptions
	Exception Specification
	terminate() and unexpected()
	Standard Exceptions and Their Uses
	Software Engineering: Exception Objects
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	OOP Using C++
	OOP Language Requirements
	11.1.1 ADTs: Encapsulation and Data Hiding
	11.1.2 Reuse and Inheritance
	11.1.3 Polymorphism

	OOP: The Dominant Programming Methodology
	Designing with OOP in Mind
	Class-Responsibility-Collaborator
	11.4.1 CRC Cards

	Design Patterns
	A Further Assessment of C++
	11.6.1 Why C++ Is Better Than Java
	11.6.2 A Short Rebuttal

	Software Engineering: Last Thoughts
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	ASCII Character Codes
	Operator Precedence and Associativity
	String Library
	Constructors
	Member Functions
	Global Operators

	The tio Library
	Console
	FormattedWriter
	PrintFileWriter
	ReadException
	ReadInput

	Index



