Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components,
creating Internet Web server applications, and including support for
industry-standard specifications such as TCP/IP, OLE, and ActiveX. The Developer’s
Guide assumes you are familiar with using C++Builder and understand fundamental
C++Builder programming techniques. For an introduction to C++Builder
programming and the integrated development environment (IDE), see the Quick
Start and the online Help.

What's in this manual?

This manual contains five parts, as follows:

¢ PartI, “Programming with C++Builder,” describes how to build general-purpose
C++Builder applications. This part provides details on programming techniques
you can use in any C++Builder application. For example, it describes how to use
common Visual Component Library (VCL) objects that make user interface
programming easy such as handling strings, manipulating text, implementing the
Windows common dialog, toolbars, and cool bars. It also includes chapters on
working with graphics, error and exception handling, using DLLs, OLE
automation, and writing international applications.

Generally, it rarely matters that C++Builder’s underlying VCL is written in Object
Pascal. However, there are a few instances where it affects your C++Builder
programs. A chapter on C++ language support and the VCL details such language
issues as how C++ class instantiation differs when using VCL classes and the C++
language extensions added to support the C++Builder
“component-property-event” model of programming.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how
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to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

e Part II, “Developing database applications,” describes how to build database
applications using database tools and components. C++Builder lets you access
many types of databases. With the forms and reports you create, you can access
local databases such as Paradox and dBASE, network SQL server databases like
InterBase and Sybase, and any data source accessible through open database
connectivity (ODBC) or ActiveX Data Objects (ADO).

e Part III, “Writing distributed applications,” describes how to create Web server
applications as CGI applications or dynamic-link libraries (DLLs). C++Builder
provides Internet-specific components that make it easy to handle events
associated with a specific Uniform Resource Identifier (URI) and to
programmatically construct HTML documents.

This part also provides a chapter on the C++Builder socket components that let
you create applications that can communicate with other systems using TCP/IP
and related protocols. Sockets provide connections based on the TCP/IP protocol,
but are sufficiently general to work with related protocols such as Xerox Network
System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

¢ Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects. C++Builder
supports COM applications that are based on the Active Template Library (ATL).
Wizards and a Type Library editor ease the development of COM servers, and an
importing tool lets you quickly create client applications. Support for COM clients
is available in all editions of C++Builder. To create COM servers, you need the
Professional or Enterprise edition.

* Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL class library.

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol ~ Meaning

Monospace type Monospaced text represents text as it appears on screen or in C++ code. It
also represents anything you must type.

[1 Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent C++ reserved words or
compiler options.
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Table 1.1  Typefaces and symbols (continued)

Typeface or symbol ~ Meaning

Italics  Ttalicized words in text represent C++ identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press ESc to
exit a menu.”

Contacting developer support

Inprise offers a variety of support options. These include free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of support,
ranging from support on installation of the Borland product to fee-based
consultant-level support and detailed assistance.

For more information about Inprise’s developer support services, please see our Web
site at http:/ /www.borland.com /devsupport, call Borland Assist at (800) 523-7070,
or contact our Sales Department at (831) 431-1064. For customers outside of the
United States of America, see our web site at http:/ /www.borland.com /bww /
intlcust.html.

When contacting support, be prepared to provide complete information about your
environment, the version of the product you are using, and a detailed description of
the problem.

For information about year 2000 issues and our products, see the following URL:
http:/ /www.borland.com/about/y2000/.
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