Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components,
creating Internet Web server applications, and including support for
industry-standard specifications such as TCP/IP, OLE, and ActiveX. The Developer’s
Guide assumes you are familiar with using C++Builder and understand fundamental
C++Builder programming techniques. For an introduction to C++Builder
programming and the integrated development environment (IDE), see the Quick
Start and the online Help.

What's in this manual?

This manual contains five parts, as follows:

¢ PartI, “Programming with C++Builder,” describes how to build general-purpose
C++Builder applications. This part provides details on programming techniques
you can use in any C++Builder application. For example, it describes how to use
common Visual Component Library (VCL) objects that make user interface
programming easy such as handling strings, manipulating text, implementing the
Windows common dialog, toolbars, and cool bars. It also includes chapters on
working with graphics, error and exception handling, using DLLs, OLE
automation, and writing international applications.

Generally, it rarely matters that C++Builder’s underlying VCL is written in Object
Pascal. However, there are a few instances where it affects your C++Builder
programs. A chapter on C++ language support and the VCL details such language
issues as how C++ class instantiation differs when using VCL classes and the C++
language extensions added to support the C++Builder
“component-property-event” model of programming.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how

Introduction 1-1

Manual conventions

to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

e Part II, “Developing database applications,” describes how to build database
applications using database tools and components. C++Builder lets you access
many types of databases. With the forms and reports you create, you can access
local databases such as Paradox and dBASE, network SQL server databases like
InterBase and Sybase, and any data source accessible through open database
connectivity (ODBC) or ActiveX Data Objects (ADO).

e Part III, “Writing distributed applications,” describes how to create Web server
applications as CGI applications or dynamic-link libraries (DLLs). C++Builder
provides Internet-specific components that make it easy to handle events
associated with a specific Uniform Resource Identifier (URI) and to
programmatically construct HTML documents.

This part also provides a chapter on the C++Builder socket components that let
you create applications that can communicate with other systems using TCP/IP
and related protocols. Sockets provide connections based on the TCP/IP protocol,
but are sufficiently general to work with related protocols such as Xerox Network
System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

¢ Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects. C++Builder
supports COM applications that are based on the Active Template Library (ATL).
Wizards and a Type Library editor ease the development of COM servers, and an
importing tool lets you quickly create client applications. Support for COM clients
is available in all editions of C++Builder. To create COM servers, you need the
Professional or Enterprise edition.

* Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL class library.

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol ~ Meaning

Monospace type Monospaced text represents text as it appears on screen or in C++ code. It
also represents anything you must type.

[1 Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent C++ reserved words or
compiler options.

1-2 Developer's Guide

Manual conventions

Table 1.1 Typefaces and symbols (continued)

Typeface or symbol ~ Meaning

Italics Ttalicized words in text represent C++ identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press ESc to
exit a menu.”

Contacting developer support

Inprise offers a variety of support options. These include free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of support,
ranging from support on installation of the Borland product to fee-based
consultant-level support and detailed assistance.

For more information about Inprise’s developer support services, please see our Web
site at http:/ /www.borland.com /devsupport, call Borland Assist at (800) 523-7070,
or contact our Sales Department at (831) 431-1064. For customers outside of the
United States of America, see our web site at http:/ /www.borland.com /bww /
intlcust.html.

When contacting support, be prepared to provide complete information about your
environment, the version of the product you are using, and a detailed description of
the problem.

For information about year 2000 issues and our products, see the following URL:
http:/ /www.borland.com/about/y2000/.

Introduction 1-3

	Developer’s Guide
	Contents
	Tables
	Figures
	Ch 1: Introduction
	What’s in this manual?
	Manual conventions
	Contacting developer support

	Part I: Programming with C++Builder
	Ch 2: Programming with C++Builder
	The integrated development environment
	Designing applications
	Understanding the VCL
	Properties
	Methods
	Events
	User events
	System events

	Objects, components, and controls in the VCL
	The TObject branch
	The TPersistent branch
	The TComponent branch
	The TControl branch
	The TWinControl branch
	Properties common to TControl
	Action properties
	Position, size, and alignment properties
	Display properties
	Parent properties
	A navigation property
	Drag-and-drop properties
	Drag-and-dock properties

	Standard events common to TControl
	Properties common to TWinControl
	General information properties
	Border style display properties
	Navigation properties
	Drag-and-dock properties

	Events common to TWinControl
	Creating the application user interface
	Using components
	VCL standard components
	Text controls
	Specialized input controls
	Buttons and similar controls
	Button controls
	Bitmap buttons
	Speed buttons
	Check boxes
	Radio buttons
	Toolbars
	Cool bars
	Handling lists
	List boxes and check-list boxes
	Combo boxes
	Tree views
	List views
	Date-time pickers and month calendars
	Grouping components
	Group boxes and radio groups
	Panels
	Scroll boxes
	Tab controls
	Page controls
	Header controls
	Visual feedback
	Labels and static-text components
	Status bars
	Progress bars
	Help and hint properties
	Grids
	Draw grids
	String grids
	Graphics display
	Images
	Shapes
	Bevels
	Paint boxes
	Animation control
	Windows common dialog boxes
	Using windows common dialog boxes

	Using helper objects
	Working with lists
	Working with string lists
	Loading and saving string lists
	Creating a new string list
	Manipulating strings in a list
	Associating objects with a string list

	Windows registry and INI files
	Using TINIFile
	Using TRegistry
	Using TRegINIFile
	Using TCanvas
	Using TPrinter

	Using streams

	Developing applications
	Editing code
	Debugging applications
	Deploying applications

	Ch 3: Building applications, components, and libraries
	Creating applications
	Windows applications
	User interface models
	Setting IDE, project, and compilation options

	Programming templates
	Console applications
	Using the VCL in console applications

	Service applications
	Service threads
	Service name properties
	Debugging services

	Creating packages and DLLs
	When to use packages and DLLs

	Using DLLs in C++Builder
	Creating DLLs in C++Builder
	Creating DLLs containing VCL components
	Linking DLLs
	Writing database applications
	Building distributed applications
	Distributing applications using TCP/IP
	Using sockets in applications
	Creating Web server applications

	Distributing applications using COM and DCOM
	COM and DCOM
	MTS and COM+

	Distributing applications using CORBA
	Distributing database applications

	Using data modules and remote data modules
	Creating and editing data modules
	Creating business rules in a data module

	Accessing a data module from a form
	Adding a remote data module to an application server project

	Using the Object Repository
	Sharing items within a project
	Adding items to the Object Repository
	Sharing objects in a team environment
	Using an Object Repository item in a project
	Copying an item
	Inheriting an item
	Using an item

	Using project templates
	Modifying shared items
	Specifying a default project, new form, and main form

	Ch 4: Developing the application user interface
	Understanding TApplication, TScreen, and TForm
	Using the main form
	Adding additional forms
	Linking forms

	Hiding the main form
	Working at the application level
	Handling the screen
	Managing layout

	Working with messages
	More details on forms
	Controlling when forms reside in memory
	Displaying an auto-created form
	Creating forms dynamically
	Creating modeless forms such as windows
	Using a local variable to create a form instance

	Passing additional arguments to forms
	Retrieving data from forms
	Retrieving data from modeless forms
	Retrieving data from modal forms

	Reusing components and groups of components
	Creating and using component templates
	Working with frames
	Creating frames
	Adding frames to the Component palette

	Using and modifying frames
	Sharing frames

	Creating and managing menus
	Opening the Menu Designer
	Building menus
	Naming menus
	Naming the menu items
	Adding, inserting, and deleting menu items
	Creating submenus
	Adding images to menu items
	Viewing the menu

	Editing menu items in the Object Inspector
	Using the Menu Designer context menu
	Commands on the context menu
	Switching between menus at design time

	Using menu templates
	Saving a menu as a template
	Naming conventions for template menu items and event handlers

	Manipulating menu items at runtime
	Merging menus
	Specifying the active menu: Menu property
	Determining the order of merged menu items: GroupIndex property

	Importing resource files

	Designing toolbars and cool bars
	Adding a toolbar using a panel component
	Adding a speed button to a panel
	Assigning a speed button’s glyph
	Setting the initial condition of a speed button
	Creating a group of speed buttons
	Allowing toggle buttons

	Adding a toolbar using the toolbar component
	Adding a tool button
	Assigning images to tool buttons
	Setting tool button appearance and initial conditions
	Creating groups of tool buttons
	Allowing toggled tool buttons

	Adding a cool bar component
	Setting the appearance of the cool bar

	Responding to clicks
	Assigning a menu to a tool button

	Adding hidden toolbars
	Hiding and showing toolbars

	Using action lists
	Action objects
	Using Actions
	Centralizing code
	Linking properties
	Executing actions
	Updating actions

	Pre-defined action classes
	Standard edit actions
	Standard Window actions
	Standard Help actions
	DataSet actions

	Writing action components
	How actions find their targets
	Registering actions
	Writing action list editors

	Ch 5: Working with controls
	Implementing drag-and-drop in controls
	Starting a drag operation
	Accepting dragged items
	Dropping items
	Ending a drag operation
	Customizing drag and drop with a drag object
	Changing the drag mouse pointer

	Implementing drag-and-dock in controls
	Making a windowed control a docking site
	Making a control a dockable child
	Controlling how child controls are docked
	Controlling how child controls are undocked
	Controlling how child controls respond to drag-and-dock operations

	Working with text in controls
	Setting text alignment
	Adding scroll bars at runtime
	Adding the Clipboard object
	Selecting text
	Selecting all text
	Cutting, copying, and pasting text
	Deleting selected text
	Disabling menu items
	Providing a pop-up menu
	Handling the OnPopup event

	Adding graphics to controls
	Indicating that a control is owner-drawn
	Adding graphical objects to a string list
	Adding images to an application
	Adding images to a string list
	Drawing owner-drawn items

	Sizing owner-draw items
	Drawing each owner-draw item

	Ch 6: Working with graphics and multimedia
	Overview of graphics programming
	Refreshing the screen
	Types of graphic objects
	Common properties and methods of Canvas
	Using the properties of the Canvas object
	Using pens
	Using brushes
	Reading and setting pixels

	Using Canvas methods to draw graphic objects
	Drawing lines and polylines
	Drawing shapes

	Handling multiple drawing objects in your application
	Keeping track of which drawing tool to use
	Changing the tool with speed buttons
	Using drawing tools

	Drawing on a graphic
	Making scrollable graphics
	Adding an image control

	Loading and saving graphics files
	Loading a picture from a file
	Saving a picture to a file
	Replacing the picture

	Using the Clipboard with graphics
	Copying graphics to the Clipboard
	Cutting graphics to the Clipboard
	Pasting graphics from the Clipboard

	Rubber banding example
	Responding to the mouse
	Adding a field to a form object to track mouse actions
	Refining line drawing

	Working with multimedia
	Adding silent video clips to an application
	Example of adding silent video clips

	Adding audio and/or video clips to an application
	Example of adding audio and/or video clips

	Ch 7: Writing multi-threaded applications
	Defining thread objects
	Initializing the thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the thread function
	Using the main VCL thread
	Using thread-local variables
	Checking for termination by other threads

	Writing clean-up code

	Coordinating threads
	Avoiding simultaneous access
	Locking objects
	Using critical sections
	Using the multi-read exclusive-write synchronizer
	Other techniques for sharing memory

	Waiting for other threads
	Waiting for a thread to finish executing
	Waiting for a task to be completed

	Executing thread objects
	Overriding the default priority
	Starting and stopping threads

	Debugging multi-threaded applications

	Ch 8: Exception handling
	C++ exception handling
	ANSI requirements for exception handling
	Exception handling syntax
	Exception declarations
	Throwing an exception
	Examples

	Handling an exception
	Exception specifications
	Constructors and destructors in exception handling
	Unhandled exceptions
	Setting exception handling options

	Structured exceptions under Win32
	Syntax of structured exceptions
	Handling structured exceptions
	Exception filters
	Mixing C++ with structured exceptions
	C-based exceptions in C++ program example

	Defining exceptions
	Raising exceptions
	Termination blocks

	VCL exception handling
	Differences between C++ and VCL exception handling
	Handling operating system exceptions
	Handling VCL exceptions
	VCL exception classes
	Portability considerations

	Ch 9: C++ language support for the VCL
	C++ and Object Pascal object models
	Object identity and instantiation
	Distinguishing C++ and Object Pascal references
	Copying objects
	Objects as function arguments

	Object construction for C++Builder VCL classes
	C++ object construction
	Object Pascal object construction
	C++Builder object construction

	Calling virtual methods in base class constructors
	Object Pascal model
	C++ model
	C++Builder model
	Example: calling virtual methods
	Constructor initialization of data members for virtual functions

	Object destruction
	Exceptions thrown from constructors
	Virtual methods called from destructors

	AfterConstruction and BeforeDestruction
	Class virtual functions

	Support for Object Pascal data types and language concepts
	Typedefs
	Classes that support the Object Pascal language
	C++ language counterparts to the Object Pascal language
	Var parameters
	Untyped parameters

	Open arrays
	Calculating the number of elements
	Temporaries
	array of const
	OPENARRAY macro
	EXISTINGARRAY macro
	C++ functions that take open array arguments

	Types defined differently
	Boolean data types
	Char data types

	Resource strings
	Default parameters
	Runtime type information
	Unmapped types
	6-byte Real types
	Arrays as return types of functions

	Keyword extensions
	__classid
	__closure
	__property
	__published

	The __declspec keyword extension
	__declspec(delphiclass)
	__declspec(delphireturn)
	__declspec(dynamic)
	__declspec(hidesbase)
	__declspec(package)
	__declspec(pascalimplementation)

	Ch 10: Working with packages and components
	Why use packages?
	Packages and standard DLLs

	Runtime packages
	Using packages in an application
	Dynamically loading packages
	Deciding which runtime packages to use
	Custom packages

	Design-time packages
	Installing component packages

	Creating and editing packages
	Creating a package
	Editing an existing package
	Package source files and project option files
	Packaging components

	Understanding the structure of a package
	Naming packages
	The Requires list
	The Contains list

	Compiling packages
	Package-specific compiler directives
	Using the command-line compiler and linker
	Package files created by a successful compilation

	Deploying packages
	Deploying applications that use packages
	Distributing packages to other developers
	Package collection files

	Ch 11: Creating international applications
	Internationalization and localization
	Internationalization
	Localization

	Internationalizing applications
	Enabling application code
	Character sets
	OEM and ANSI character sets
	Double byte character sets
	Wide characters
	Including bi-directional functionality in applications
	BiDiMode property
	Locale-specific features

	Designing the user interface
	Text
	Graphic images
	Formats and sort order
	Keyboard mappings

	Isolating resources
	Creating resource DLLs
	Using resource DLLs
	Dynamic switching of resource DLLs

	Localizing applications
	Localizing resources

	Ch 12: Deploying applications
	Deploying general applications
	Using installation programs
	Identifying application files
	Application files
	Package files
	ActiveX controls
	Helper applications
	DLL locations

	Deploying database applications
	Providing the database engine
	Borland Database Engine
	Third-party database engines
	SQL Links

	Multi-tiered Distributed Application Services (MIDAS)

	Deploying Web applications
	Programming for varying host environments
	Screen resolutions and color depths
	Considerations when not dynamically resizing
	Considerations when dynamically resizing forms and controls
	Accommodating varying color depths

	Fonts
	Windows versions

	Software license requirements
	DEPLOY.TXT
	README.TXT
	No-nonsense license agreement
	Third-party product documentation

	Part II: Developing database applications
	Ch 13: Designing database applications
	Using databases
	Types of databases
	Local databases
	Remote database servers

	Database security
	Transactions
	Data Dictionary
	Referential integrity, stored procedures, and triggers

	Database architecture
	Planning for scalability
	Single-tiered database applications
	Two-tiered database applications
	Multi-tiered database applications

	Designing the user interface
	Displaying a single record
	Displaying multiple records
	Analyzing data
	Selecting what data to show
	Writing reports

	Ch 14: Building one- and two-tiered applications
	BDE-based applications
	BDE-based architecture
	Understanding databases and datasets
	Using sessions

	Connecting to databases
	Using transactions
	Explicitly controlling transactions
	Using a database component for transactions
	Using the TransIsolation property
	Using passthrough SQL
	Using local transactions

	Caching updates
	Creating and restructuring database tables

	ADO-based applications
	ADO-based architecture
	Understanding ADO databases and datasets

	Connecting to ADO databases
	Retrieving data
	Creating and restructuring ADO database tables

	Flat-file database applications
	Creating the datasets
	Creating a new dataset using persistent fields
	Creating a dataset using field and index definitions
	Creating a dataset based on an existing table

	Loading and saving data
	Using the briefcase model

	Scaling up to a three-tiered application

	Ch 15: Creating multi-tiered applications
	Advantages of the multi-tiered database model
	Understanding MIDAS technology
	Overview of a MIDAS-based multi-tiered application
	The structure of the client application
	The structure of the application server
	Using transactional data modules
	Pooling remote data modules
	Using the IAppServer interface

	Choosing a connection protocol
	Using DCOM connections
	Using Socket connections
	Using Web connections

	Building a multi-tiered application
	Creating the application server
	Setting up the remote data module
	Configuring the remote data module when it is not transactional
	Configuring a transactional remote data module

	Creating a data provider for the application server
	Extending the application server’s interface
	Adding callbacks to the application server’s interface
	Extending a transactional application server’s interface

	Creating the client application
	Connecting to the application server
	Specifying a connection using DCOM
	Specifying a connection using sockets
	Specifying a connection using HTTP
	Brokering connections

	Managing server connections
	Connecting to the server
	Dropping or changing a server connection

	Calling server interfaces

	Managing transactions in multi-tiered applications
	Supporting master/detail relationships
	Supporting state information in remote data modules
	Writing MIDAS Web applications
	Distributing a client application as an ActiveX control
	Creating an Active Form for the client application

	Building Web applications using InternetExpress
	Building an InternetExpress application
	Using the javascript libraries
	Granting permission to access and launch the application server

	Using an XML broker
	Fetching XML data packets
	Applying updates from XML delta packets

	Creating Web pages with a MIDAS page producer
	Using the Web page editor
	Setting Web item properties
	Customizing the MIDAS page producer template

	Ch 16: Using provider components
	Determining the source of data
	Choosing how to apply updates
	Controlling what information is included in data packets
	Specifying what fields appear in data packets
	Setting options that influence the data packets
	Adding custom information to data packets

	Responding to client data requests
	Responding to client update requests
	Editing delta packets before updating the database
	Influencing how updates are applied
	Screening individual updates
	Resolving update errors on the provider
	Applying updates to datasets that do not represent a single table

	Responding to client-generated events
	Handling server constraints

	Ch 17: Managing database sessions
	Working with a session component
	Using the default session
	Creating additional sessions
	Naming a session
	Activating a session
	Customizing session start-up
	Specifying default database connection behavior
	Creating, opening, and closing database connections
	Closing a single database connection
	Closing all database connections

	Dropping temporary database connections
	Searching for a database connection
	Retrieving information about a session
	Working with BDE aliases
	Specifying alias visibility
	Making session aliases visible to other sessions and applications
	Determining known aliases, drivers, and parameters
	Creating, modifying, and deleting aliases

	Iterating through a session’s database components
	Specifying Paradox directory locations
	Specifying the control file location
	Specifying a temporary files location

	Working with password-protected Paradox and dBASE tables
	Using the AddPassword method
	Using the RemovePassword and RemoveAllPasswords methods
	Using the GetPassword method and OnPassword event

	Managing multiple sessions
	Using a session component in data modules

	Ch 18: Connecting to databases
	Understanding persistent and temporary database components
	Using temporary database components
	Creating database components at design time
	Creating database components at runtime

	Controlling connections
	Associating a database component with a session
	Specifying a BDE alias
	Setting BDE alias parameters
	Controlling server login
	Connecting to a database server
	Special considerations when connecting to a remote server
	Working with network protocols
	Using ODBC

	Disconnecting from a database server
	Closing datasets without disconnecting from a server
	Iterating through a database component’s datasets

	Understanding database and session component interactions
	Using database components in data modules
	Executing SQL statements from a TDatabase component
	Executing SQL statements from TDatabase
	Executing parameterized SQL statements

	Ch 19: Understanding datasets
	What is TDataSet?
	Types of datasets
	Opening and closing datasets
	Determining and setting dataset states
	Inactivating a dataset
	Browsing a dataset
	Enabling dataset editing
	Enabling insertion of new records
	Enabling index-based searches and ranges on tables
	Calculating fields
	Filtering records
	Updating records

	Navigating datasets
	Using the First and Last methods
	Using the Next and Prior methods
	Using the MoveBy method
	Using the Eof and Bof properties
	Eof
	Bof

	Marking and returning to records

	Searching datasets
	Using Locate
	Using Lookup

	Displaying and editing a subset of data using filters
	Enabling and disabling filtering
	Creating filters
	Setting the Filter property
	Writing an OnFilterRecord event handler
	Switching filter event handlers at runtime

	Setting filter options
	Navigating records in a filtered dataset

	Modifying data
	Editing records
	Adding new records
	Inserting records
	Appending records

	Deleting records
	Posting data to the database
	Canceling changes
	Modifying entire records

	Using dataset events
	Aborting a method
	Using OnCalcFields

	Using BDE-enabled datasets
	Overview of BDE-enablement
	Handling database and session connections
	Using the DatabaseName and SessionName properties
	Working with BDE handle properties

	Using cached updates
	Caching BLOBs

	Ch 20: Working with field components
	Understanding field components
	Dynamic field components
	Persistent field components

	Creating persistent fields
	Arranging persistent fields
	Defining new persistent fields
	Defining a data field
	Defining a calculated field
	Programming a calculated field
	Defining a lookup field
	Defining an aggregate field
	Deleting persistent field components

	Setting persistent field properties and events
	Setting display and edit properties at design time
	Setting field component properties at runtime
	Creating attribute sets for field components
	Associating attribute sets with field components
	Removing attribute associations
	Controlling and masking user input
	Using default formatting for numeric, date, and time fields
	Handling events

	Working with field component methods at runtime
	Displaying, converting, and accessing field values
	Displaying field component values in standard controls
	Converting field values
	Accessing field values with the default dataset property
	Accessing field values with a dataset’s Fields property
	Accessing field values with a dataset’s FieldByName method

	Checking a field’s current value
	Setting a default value for a field
	Working with constraints
	Creating a custom constraint
	Using server constraints

	Using object fields
	Displaying ADT and array fields
	Working with ADT fields
	Accessing ADT field values

	Working with array fields
	Accessing array field values

	Working with dataset fields
	Displaying dataset fields
	Accessing data in a nested dataset

	Working with reference fields
	Displaying reference fields
	Accessing data in a reference field

	Ch 21: Working with tables
	Using table components
	Setting up a table component
	Specifying a database location
	Specifying a table name
	Specifying the table type for local tables
	Opening and closing a table

	Controlling read/write access to a table
	Searching for records
	Searching for records based on indexed fields
	Executing a search with Goto methods
	Executing a search with Find methods
	Specifying the current record after a successful search
	Searching on partial keys
	Searching on alternate indexes
	Repeating or extending a search

	Sorting records
	Retrieving a list of available indexes with GetIndexNames
	Specifying an index with IndexName
	Specifying a dBASE index file

	Specifying sort order for SQL tables
	Specifying fields with IndexFieldNames

	Examining the field list for an index

	Working with a subset of data
	Understanding the differences between ranges and filters
	Creating and applying a new range
	Setting the beginning of a range
	Setting the end of a range
	Setting start- and end-range values
	Specifying a range based on partial keys
	Including or excluding records that match boundary values
	Applying a range
	Canceling a range

	Modifying a range
	Editing the start of a range
	Editing the end of a range

	Deleting all records in a table
	Deleting a table
	Renaming a table
	Creating a table
	Importing data from another table
	Using TBatchMove
	Creating a batch move component
	Specifying a batch move mode
	Appending records
	Updating records
	Appending and updating records
	Copying datasets
	Deleting records

	Mapping data types
	Executing a batch move
	Handling batch move errors

	Synchronizing tables linked to the same database table
	Creating master/detail forms
	Building an example master/detail form

	Working with nested tables
	Setting up a nested table component

	Ch 22: Working with queries
	Using queries effectively
	Queries for desktop developers
	Queries for server developers

	What databases can you access with a query component?
	Using a query component: an overview
	Specifying the SQL statement to execute
	Specifying the SQL property at design time
	Specifying an SQL statement at runtime
	Setting the SQL property directly
	Loading the SQL property from a file
	Loading the SQL property from string list object

	Setting parameters
	Supplying parameters at design time
	Supplying parameters at runtime
	Using a data source to bind parameters

	Executing a query
	Executing a query at design time
	Executing a query at runtime
	Executing a query that returns a result set
	Executing a query without a result set

	Preparing a query
	Unpreparing a query to release resources
	Creating heterogeneous queries
	Improving query performance
	Disabling bi-directional cursors

	Working with result sets
	Enabling editing of a result set
	Local SQL requirements for a live result set
	Restrictions on live queries

	Remote server SQL requirements for a live result set
	Restrictions on updating a live result set
	Updating a read-only result set

	Ch 23: Working with stored procedures
	When should you use stored procedures?
	Using a stored procedure
	Creating a stored procedure component
	Creating a stored procedure
	Preparing and executing a stored procedure
	Using stored procedures that return result sets
	Retrieving a result set with a TQuery
	Retrieving a result set with a TStoredProc

	Using stored procedures that return data using parameters
	Retrieving individual values with a TQuery
	Retrieving individual values with a TStoredProc

	Using stored procedures that perform actions on data
	Executing an action stored procedure with a TQuery
	Executing an action stored procedure with a TStoredProc

	Understanding stored procedure parameters
	Using input parameters
	Using output parameters
	Using input/output parameters
	Using the result parameter
	Accessing parameters at design time
	Setting parameter information at design time
	Creating parameters at runtime
	Binding parameters

	Viewing parameter information at design time
	Working with Oracle overloaded stored procedures

	Ch 24: Working with ADO components
	Overview of ADO components
	Connecting to ADO data stores
	Connecting to a data store using TADOConnection
	Using a TADOConnection versus a dataset’s ConnectionString
	Specifying the connection
	Accessing the connection object
	Activating and deactivating the connection
	Determining what a connection component is doing

	Fine-tuning a connection
	Specifying connection attributes
	Controlling timeouts
	Controlling the connection login

	Listing tables and stored procedures
	Accessing the connection’s datasets
	Accessing the connection’s commands
	Listing available tables
	Listing available stored procedures

	Working with (connection) transactions
	Using transaction methods
	Using transaction events

	Using ADO datasets
	Features common to all ADO dataset components
	Modifying data
	Navigating in a dataset
	Using visual data-aware controls
	Connecting to a data store using ADO dataset components
	Working with record sets
	Using batch updates
	Loading data from and saving data to files
	Using parameters in commands

	Using TADODataSet
	Retrieving a dataset using a command

	Using TADOTable
	Specifying the table to use

	Using TADOQuery
	Specifying SQL statements
	Executing SQL statements

	Using TADOStoredProc
	Specifying the stored procedure
	Executing the stored procedure
	Using parameters with stored procedures

	Executing commands
	Specifying the command
	Using the Execute method
	Canceling commands
	Retrieving result sets with commands
	Handling command parameters

	Ch 25: Creating and using a client dataset
	Working with data using a client dataset
	Navigating data in client datasets
	Limiting what records appear
	Representing master/detail relationships
	Constraining data values
	Making data read-only
	Editing data
	Undoing changes
	Saving changes

	Sorting and indexing
	Adding a new index
	Deleting and switching indexes
	Using indexes to group data

	Representing calculated values
	Using internally calculated fields in client datasets

	Using maintained aggregates
	Specifying aggregates
	Aggregating over groups of records
	Obtaining aggregate values

	Adding application-specific information to the data

	Copying data from another dataset
	Assigning data directly
	Cloning a client dataset cursor

	Using a client dataset with a data provider
	Specifying a data provider
	Getting parameters from the application server
	Passing parameters to the application server
	Sending query or stored procedure parameters
	Limiting records with parameters

	Overriding the dataset on the application server
	Requesting data from an application server
	Handling constraints
	Handling constraints from the server
	Adding custom constraints

	Updating records
	Applying updates
	Reconciling update errors

	Refreshing records
	Communicating with providers using custom events

	Using a client dataset with flat-file data
	Creating a new dataset
	Loading data from a file or stream
	Merging changes into data
	Saving data to a file or stream

	Ch 26: Working with cached updates
	Deciding when to use cached updates
	Using cached updates
	Enabling and disabling cached updates
	Fetching records
	Applying cached updates
	Applying cached updates with a database component method
	Applying cached updates with dataset component methods
	Applying updates for master/detail tables

	Canceling pending cached updates
	Canceling pending updates and disabling further cached updates
	Canceling pending cached updates
	Canceling updates to the current record

	Undeleting cached records
	Specifying visible records in the cache
	Checking update status

	Using update objects to update a dataset
	Specifying the UpdateObject property for a dataset
	Using a single update object
	Using multiple update objects

	Creating SQL statements for update components
	Creating SQL statements at design time
	Understanding parameter substitution in update SQL statements
	Composing update SQL statements
	Using an update component’s Query property
	Using the DeleteSQL, InsertSQL, and ModifySQL properties

	Executing update statements
	Calling the Apply method
	Calling the SetParams method
	Calling the ExecSQL method

	Using dataset components to update a dataset

	Updating a read-only result set
	Controlling the update process
	Determining if you need to control the updating process
	Creating an OnUpdateRecord event handler

	Handling cached update errors
	Referencing the dataset to which to apply updates
	Indicating the type of update that generated an error
	Specifying the action to take
	Working with error message text
	Accessing a field’s OldValue, NewValue, and CurValue properties

	Ch 27: Using data controls
	Using common data control features
	Associating a data control with a dataset
	Editing and updating data
	Enabling editing in controls on user entry
	Editing data in a control

	Disabling and enabling data display
	Refreshing data display
	Enabling mouse, keyboard, and timer events

	Using data sources
	Using TDataSource properties
	Setting the DataSet property
	Setting the Name property
	Setting the Enabled property
	Setting the AutoEdit property

	Using TDataSource events
	Using the OnDataChange event
	Using the OnUpdateData event
	Using the OnStateChange event

	Controls that represent a single field
	Displaying data as labels
	Displaying and editing fields in an edit box
	Displaying and editing text in a memo control
	Displaying and editing text in a rich edit memo control
	Displaying and editing graphics fields in an image control
	Displaying and editing data in list and combo boxes
	Displaying and editing data in a list box
	Displaying and editing data in a combo box

	Displaying and editing data in lookup list and combo boxes
	Specifying a list based on a lookup field
	Specifying a list based on a secondary data source
	Setting lookup list and combo box properties
	Searching incrementally for list item values

	Handling Boolean field values with check boxes
	Restricting field values with radio controls

	Viewing and editing data with TDBGrid
	Using a grid control in its default state
	Creating a customized grid
	Understanding persistent columns
	Determining the source of a column property at runtime
	Creating persistent columns
	Deleting persistent columns
	Arranging the order of persistent columns
	Defining a lookup list column
	Defining a pick list column
	Putting a button in a column
	Setting column properties at design time
	Restoring default values to a column

	Displaying ADT and array fields
	Setting grid options
	Editing in the grid
	Rearranging column order at design time
	Rearranging column order at runtime
	Controlling grid drawing

	Responding to user actions at runtime

	Creating a grid that contains other data-aware controls
	Navigating and manipulating records
	Choosing navigator buttons to display
	Hiding and showing navigator buttons at design time
	Hiding and showing navigator buttons at runtime

	Displaying fly-over help
	Using a single navigator for multiple datasets

	Ch 28: Using decision support components
	Overview
	About crosstabs
	One-dimensional crosstabs
	Multidimensional crosstabs

	Guidelines for using decision support components
	Using datasets with decision support components
	Creating decision datasets with TQuery or TTable
	Creating decision datasets with the Decision Query editor
	Using the Decision Query editor

	Decision query properties

	Using decision cubes
	Decision cube properties and events
	Using the Decision Cube editor
	Viewing and changing dimension settings
	Setting the maximum available dimensions and summaries
	Viewing and changing design options

	Using decision sources
	Properties and events

	Using decision pivots
	Decision pivot properties

	Creating and using decision grids
	Creating decision grids
	Using decision grids
	Opening and closing decision grid fields
	Reorganizing rows and columns in decision grids
	Drilling down for detail in decision grids
	Limiting dimension selection in decision grids

	Decision grid properties

	Creating and using decision graphs
	Creating decision graphs
	Using decision graphs
	The decision graph display
	Customizing decision graphs
	Setting decision graph template defaults
	Customizing decision graph series

	Decision support components at runtime
	Decision pivots at runtime
	Decision grids at runtime
	Decision graphs at runtime

	Decision support components and memory control
	Setting maximum dimensions, summaries, and cells
	Setting dimension state
	Using paged dimensions

	Part III: Writing distributed applications
	Ch 29: Writing CORBA applications
	Overview of a CORBA application
	Understanding stubs and skeletons
	Using Smart Agents
	Activating server applications
	Binding interface calls dynamically

	Writing CORBA servers
	Defining object interfaces
	Using the CORBA Server Wizard
	Generating stubs and skeletons from an IDL file
	Using the CORBA Object Implementation Wizard
	Instantiating CORBA objects
	Using the delegation model
	Viewing and editing changes

	Implementing CORBA Objects
	Guarding against thread conflicts

	Changing CORBA interfaces
	Registering server interfaces

	Writing CORBA clients
	Using stubs
	Using the dynamic invocation interface

	Testing CORBA servers
	Setting up the testing tool
	Recording and running test scripts

	Ch 30: Creating Internet server applications
	Terminology and standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP request header information

	HTTP server activity
	Composing client requests
	Serving client requests
	Responding to client requests

	Web server applications
	Types of Web server applications
	ISAPI and NSAPI
	CGI stand-alone
	Win-CGI stand-alone

	Creating Web server applications
	The Web module
	The Web Application object

	The structure of a Web server application
	The Web dispatcher
	Adding actions to the dispatcher
	Dispatching request messages

	Action items
	Determining when action items fire
	The target URL
	The request method type
	Enabling and disabling action items
	Choosing a default action item

	Responding to request messages with action items
	Sending the response
	Using multiple action items

	Accessing client request information
	Properties that contain request header information
	Properties that identify the target
	Properties that describe the Web client
	Properties that identify the purpose of the request
	Properties that describe the expected response
	Properties that describe the content

	The content of HTTP request messages

	Creating HTTP response messages
	Filling in the response header
	Indicating the response status
	Indicating the need for client action
	Describing the server application
	Describing the content

	Setting the response content
	Sending the response

	Generating the content of response messages
	Using page producer components
	HTML templates
	Specifying the HTML template
	Converting HTML-transparent tags
	Using page producers from an action item
	Chaining page producers together

	Using database information in responses
	Adding a session to the Web module
	Representing database information in HTML
	Using dataset page producers
	Using table producers
	Specifying the table attributes
	Specifying the row attributes
	Specifying the columns
	Embedding tables in HTML documents
	Setting up a dataset table producer
	Setting up a query table producer

	Debugging server applications
	Debugging ISAPI and NSAPI applications
	Debugging under Windows NT
	Debugging with a Microsoft IIS server
	Debugging under MTS
	Debugging with a Windows 95 Personal Web Server
	Debugging with Netscape Server Version 2.0

	Debugging CGI and Win-CGI applications
	Simulating the server
	Debugging as a DLL

	Ch 31: Working with sockets
	Implementing services
	Understanding service protocols
	Communicating with applications

	Services and ports

	Types of socket connections
	Client connections
	Listening connections
	Server connections

	Describing sockets
	Describing the host
	Choosing between a host name and an IP address

	Using ports

	Using socket components
	Using client sockets
	Specifying the desired server
	Forming the connection
	Getting information about the connection
	Closing the connection

	Using server sockets
	Specifying the port
	Listening for client requests
	Connecting to clients
	Getting information about connections
	Closing server connections

	Responding to socket events
	Error events
	Client events
	Server events
	Events when listening
	Events with client connections

	Reading and writing over socket connections
	Non-blocking connections
	Reading and writing events

	Blocking connections
	Using threads with blocking connections
	Using TWinSocketStream
	Writing client threads
	Writing server threads

	Part IV: Developing COM-based applications
	Ch 32: Overview of COM technologies
	COM as a specification and implementation
	COM extensions
	Parts of a COM application
	COM interfaces
	The fundamental COM interface, IUnknown
	COM interface pointers

	COM servers
	CoClasses and class factories
	In-process, out-of-process, and remote servers
	The marshaling mechanism
	Aggregation

	COM clients

	COM extensions
	Automation servers
	Active Server Pages
	ActiveX controls
	Active Documents
	Transactional objects
	Type libraries
	The content of type libraries
	Creating type libraries
	When to use type libraries
	Accessing type libraries
	Benefits of using type libraries
	Using type library tools

	Implementing COM objects with wizards
	Code generated by wizards

	Ch 33: Working with type libraries
	Type Library editor
	Parts of the Type Library editor
	Toolbar
	Object list pane
	Status bar
	Pages of type information

	Type library elements
	Interfaces
	Dispinterfaces
	CoClasses
	Type definitions
	Modules

	Using the Type Library editor
	Valid types
	Creating a new type library
	Opening an existing type library
	Adding an interface to the type library
	Modifying an interface using the type library
	Adding properties and methods to an interface or dispinterface
	Adding a CoClass to the type library
	Adding an interface to a CoClass
	Adding an enumeration to the type library
	Adding an alias to the type library
	Adding a record or union to the type library
	Adding a module to the type library
	Saving and registering type library information
	Saving a type library
	Refreshing the type library
	Registering the type library
	Exporting an IDL file

	Deploying type libraries

	Ch 34: Creating COM clients
	Importing type library information
	Using the Import Type Library dialog
	Using the Import ActiveX dialog
	Code generated when you import type library information

	Controlling an imported object
	Using component wrappers
	ActiveX wrappers
	Automation object wrappers

	Using data-aware ActiveX controls
	Example: Printing a document with Microsoft Word
	Step 1: Prepare C++Builder for this example
	Step 2: Import the Word type library
	Step 3: Use a VTable or dispatch interface object to control Microsoft Word
	Step 4: Clean up the example

	Writing client code based on type library definitions
	Connecting to a server
	Controlling an Automation server using a dual interface
	Controlling an Automation server using a dispatch interface
	Handling events in an automation controller

	Creating Clients for servers that do not have a type library

	Ch 35: Creating simple COM servers
	Overview of creating a COM object
	Designing a COM object
	Using the COM object wizard
	Using the Automation object wizard
	Choosing a threading model
	Writing an object that supports the free threading model
	Writing an object that supports the apartment threading model
	Writing an object that supports the neutral threading model

	Specifying ATL options
	Defining a COM object’s interface
	Adding a property to the object’s interface
	Adding a method to the object’s interface
	Exposing events to clients
	Managing events in your Automation object

	Automation interfaces
	Dual interfaces
	Dispatch interfaces
	Custom interfaces

	Marshaling data
	Automation compatible types
	Type restrictions for automatic marshaling
	Custom marshaling

	Registering a COM object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the application

	Ch 36: Creating an Active Server Page
	Creating an Active Server Object
	Using the ASP intrinsics
	Application
	Request
	Response
	Session
	Server

	Creating ASPs for in-process or out-of-process servers

	Registering an Active Server Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the Active Server Page application

	Ch 37: Creating an ActiveX control
	Overview of ActiveX control creation
	Elements of an ActiveX control
	VCL control
	ActiveX wrapper
	Type library
	Property page

	Designing an ActiveX control
	Generating an ActiveX control from a VCL control
	Generating an ActiveX control based on a VCL form
	Licensing ActiveX controls
	Customizing the ActiveX control’s interface
	Adding additional properties, methods, and events
	Adding properties and methods
	Adding events

	Enabling simple data binding with the type library

	Creating a property page for an ActiveX control
	Creating a new property page
	Adding controls to a property page
	Associating property page controls with ActiveX control properties
	Updating the property page
	Updating the object

	Connecting a property page to an ActiveX control

	Registering an ActiveX control
	Testing an ActiveX control
	Deploying an ActiveX control on the Web
	Setting options

	Ch 38: Creating MTS or COM+ objects
	Understanding transactional objects
	Requirements for a transactional object

	Managing resources
	Accessing the object context
	Just-in-time activation
	Resource pooling
	Database resource dispensers
	Shared property manager
	Releasing resources

	Object pooling

	MTS and COM+ transaction support
	Transaction attributes
	Setting the transaction attribute

	Stateful and stateless objects
	Influencing how transactions end
	Initiating transactions
	Setting up a transaction object on the client side
	Setting up a transaction object on the server side

	Transaction timeout

	Role-based security
	Overview of creating transactional objects
	Using the Transactional Object wizard
	Choosing a threading model for a transactional object
	Activities

	Generating events under COM+
	Using the Event Object wizard
	Firing events using a COM+ event object

	Passing object references
	Using the SafeRef method
	Callbacks

	Debugging and testing transactional objects
	Installing transactional objects
	Administering transactional objects

	Part V: Creating custom components
	Ch 39: Overview of component creation
	Visual Component Library
	Components and classes
	How do you create components?
	Modifying existing controls
	Creating windowed controls
	Creating graphic controls
	Subclassing Windows controls
	Creating nonvisual components

	What goes into a component?
	Removing dependencies
	Properties, methods, and events
	Properties
	Events
	Methods

	Graphics encapsulation
	Registration

	Creating a new component
	Using the Component wizard
	Creating a component manually
	Creating a unit file
	Deriving the component
	Declaring a new constructor
	Registering the component

	Testing uninstalled components
	Testing installed components
	Installing a component on the Component palette
	Component file locations
	Adding the component

	Ch 40: Object-oriented programming for component writers
	Defining new classes
	Deriving new classes
	To change class defaults to avoid repetition
	To add new capabilities to a class

	Declaring a new component class

	Ancestors, descendants, and class hierarchies
	Controlling access
	Hiding implementation details
	Defining the component writer’s interface
	Defining the runtime interface
	Defining the design-time interface

	Dispatching methods
	Regular methods
	Virtual methods
	Overriding methods

	Abstract class members
	Classes and pointers

	Ch 41: Creating properties
	Why create properties?
	Types of properties
	Publishing inherited properties
	Defining properties
	The property declaration
	Internal data storage
	Direct access
	Access methods
	The read method
	The write method

	Default property values
	Specifying no default value

	Creating array properties
	Storing and loading properties
	Using the store-and-load mechanism
	Specifying default values
	Determining what to store
	Initializing after loading
	Storing and loading unpublished properties
	Creating methods to store and load property values
	Overriding the DefineProperties method

	Ch 42: Creating events
	What are events?
	Events are closures
	Events are properties
	Event types are closure types
	Event handlers have a return type of void

	Event handlers are optional

	Implementing the standard events
	Identifying standard events
	Standard events for all controls
	Standard events for standard controls

	Making events visible
	Changing the standard event handling

	Defining your own events
	Triggering the event
	Two kinds of events

	Defining the handler type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the event
	Event names start with “On”

	Calling the event

	Ch 43: Creating methods
	Avoiding dependencies
	Naming methods
	Protecting methods
	Methods that should be public
	Methods that should be protected

	Making methods virtual
	Declaring methods

	Ch 44: Using graphics in components
	Overview of graphics
	Using the canvas
	Working with pictures
	Using a picture, graphic, or canvas
	Loading and storing graphics
	Handling palettes
	Specifying a palette for a control

	Off-screen bitmaps
	Creating and managing off-screen bitmaps
	Copying bitmapped images

	Responding to changes

	Ch 45: Handling messages
	Understanding the message-handling system
	What’s in a Windows message?
	Dispatching messages
	Tracing the flow of messages

	Changing message handling
	Overriding the handler method
	Using message parameters
	Trapping messages

	Creating new message handlers
	Defining your own messages
	Declaring a message identifier
	Declaring a message-structure type

	Declaring a new message-handling method

	Ch 46: Making components available at design time
	Registering components
	Declaring the Register function
	Writing the Register function
	Specifying the components
	Specifying the palette page
	Using the RegisterComponents function

	Adding palette bitmaps
	Providing Help for your component
	Creating the Help file
	Creating the entries
	Making component help context-sensitive
	Adding component help files

	Adding property editors
	Deriving a property-editor class
	Editing the property as text
	Displaying the property value
	Setting the property value

	Editing the property as a whole
	Specifying editor attributes
	Registering the property editor

	Adding component editors
	Adding items to the context menu
	Specifying menu items
	Implementing commands

	Changing the double-click behavior
	Adding clipboard formats
	Registering the component editor

	Property categories
	Registering one property at a time
	Registering multiple properties at once
	Property category classes
	Built-in property categories
	Deriving new property categories

	Using the IsPropertyInCategory function

	Compiling components into packages
	Troubleshooting custom components

	Ch 47: Modifying an existing component
	Creating and registering the component
	Modifying the component class
	Overriding the constructor
	Specifying the new default property value

	Ch 48: Creating a graphic component
	Creating and registering the component
	Publishing inherited properties
	Adding graphic capabilities
	Determining what to draw
	Declaring the property type
	Declaring the property
	Writing the implementation method

	Overriding the constructor and destructor
	Changing default property values

	Publishing the pen and brush
	Declaring the data members
	Declaring the access properties
	Initializing owned classes
	Setting owned classes’ properties

	Drawing the component image
	Refining the shape drawing

	Ch 49: Customizing a grid
	Creating and registering the component
	Publishing inherited properties
	Changing initial values
	Resizing the cells
	Filling in the cells
	Tracking the date
	Storing the internal date
	Accessing the day, month, and year
	Generating the day numbers
	Selecting the current day

	Navigating months and years
	Navigating days
	Moving the selection
	Providing an OnChange event
	Excluding blank cells

	Ch 50: Making a control data aware
	Creating a data-browsing control
	Creating and registering the component
	Making the control read-only
	Adding the ReadOnly property
	Allowing needed updates

	Adding the data link
	Declaring the data member
	Declaring the access properties
	An example of declaring access properties
	Initializing the data link

	Responding to data changes

	Creating a data-editing control
	Changing the default value of FReadOnly
	Handling mouse-down and key-down messages
	Responding to mouse-down messages
	Responding to key-down messages

	Updating the field datalink class
	Modifying the Change method
	Updating the dataset

	Ch 51: Making a dialog box a component
	Defining the component interface
	Creating and registering the component
	Creating the component interface
	Including the form unit files
	Adding interface properties
	Adding the Execute method

	Testing the component

	App A: ANSI implementation-specific standards
	Index
	A
	B
	C
	D
	E
	F
	G
	H - I
	J - K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X - Z

