
Preface
Ruby on Rails is a full-stack framework for developing web applications.

Rails embraces many good ideas that are familiar in the Java world: the

Model-View-Controller (MVC) pattern, unit testing, agile development,

the ActiveRecord pattern, and many others. At the same time, Rails

challenges many standard practices: Instead of miles of XML configu-

ration files, Rails relies on conventions where possible. Rails is built

with Ruby, a dynamic language, and is deployed as source code.

But forget the technical points for a moment. The reason that any of

this matters is that Rails programmers are getting things done, and

fast. Rails programmers have made (and substantiated) some amazing

claims about developer productivity. They are having a lot of fun, too.

Should Java programmers be alarmed by this upstart? Absolutely not.

Java programmers are uniquely positioned to take advantage of Ruby

on Rails. This book will explain how to get started.

Who Should Read This Book?

This book is for all Java programmers. OK, let us narrow that down a

little. This book is for two subsets of Java programmers:

• Those who want to program in Ruby and Rails

• Those who do not

To the first group: We wrote this book because we love Java, and we

love Rails. We believe that Java programmers are uniquely qualified to

take advantage of Rails, because Java programmers have lived through

a lot of the struggles behind the good (and sometimes controversial)

ideas in Rails.

To the second group: Rails is not for everything, just like any other tool

isn’t. However, Rails is such an interesting tool, and Ruby is different



PREFACE 14

from Java in so many fascinating ways, that we think it is the single

best complement you can learn to round out your skill set.

To both groups: We have had a great time writing this book, because

we share a common language with you, our readers. By assuming a

common vocabulary of the Java language and patterns, we are able to

move quickly to the meat of topics. We believe that, page for page, this

is a much better book for Java developers than a general-purpose book

can ever be. Yes, that’s bragging, and we are boasting about you, our

fellow Java developers. Thanks for all the work you have put in to build

a baseline of industry knowledge on which we hope to build.

Why This Rails Book?

A lot of Rails books exist. One aspect that sets this book apart is our

Java background. We focus on the parts of Rails that will be different,

new, and interesting to a Java developer.

The second aspect that sets this book apart is our emphasis on Rails

as an ecosystem, not just as a framework. As a Java developer, you are

accustomed to having an enormous ecosystem around your program-

ming language. You have great IDEs, monitoring tools, and widgets

for every situation. Rails has an ecosystem too—not as big as Java’s

but important nevertheless. In this book, we spend less time hashing

through every random API detail in Rails. Instead, we demonstrate the

key points and then move into the ecosystem to show how those key

points are used, extended, and sometimes even replaced.

Who Should Read Some Other Book?

This book is a reference for experienced Java programmers who want to

learn Ruby and Rails. This is not a tutorial where each chapter walks

you through building some sample application. For a tutorial, plus a

general introduction to the Ruby language, we recommend Program-

ming Ruby [TFH05]. For a tutorial and introduction to Rails, we recom-

mend Agile Web Development with Rails [TH06].

This book is not a comparison of Java and Ruby for managers consider-

ing a Ruby project. For that, we recommend From Java to Ruby: Things

Every Manager Should Know [Tat06].

This book is not an introduction for nonprogrammers; for that we rec-

ommend Learn to Program [Pin06].

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=14


PREFACE 15

Why Ruby on Rails?

Rails is making programmers productive and happy. Plus, we are find-

ing that using Ruby exercises our minds more than any other main-

stream language. If you want to start a watercooler conversation about

the merits of Ruby and Rails, here are a few talking points:

• Full-stack web framework. Rails includes everything you need:

Model-View-Controller, O/RM, unit testing, and build and deploy-

ment automation. Because everything is tightly integrated, it is

ridiculously easy to get started.

• Opinionated software. Rails is not designed to let you do anything.

It is designed to help you do the right things.

• Convention over configuration. The danger of both the previous

points is that you might not be able to customize the framework to

meet your needs. Rails avoids this with convention over configura-

tion. All of Rails’ moving parts are held together by convention, but

you can override those conventions whenever you need to do so.

You get to pay as you go, relying on conventions where necessary

and overriding only exactly what you need.

• One language for application and configuration. Rails uses Ruby

for configuration as well as for application code. Ruby is easier to

manage than XML and much more powerful when configuration

becomes complex.

• The secret sauce is Ruby. Ruby is powerful and elegant, and it

has become the language we think in most of the time. Ruby

includes good ideas from mainstream programming languages. As

a Java programmer, you will have a head start in understanding

Ruby’s approach to classes, objects, inheritance, and polymor-

phism. Ruby also includes many features of Smalltalk and Lisp

that are missing from mainstream languages. As a Java program-

mer, you will be delighted to discover how blocks, closures, duck

typing, metaprogramming, and functional programming can make

your code more expressive and maintainable. Rails is the gateway

drug; Ruby is the addiction.

How to Read This Book

All readers should read the entirety of Chapter 1, Getting Started with

Rails, on page 20. The chapter includes instructions for quickly setting

up your environment so you can follow along with all the example code.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=15


PREFACE 16

Next you have a choice: Ruby first or Rails first? If you are a bottom-

up learner who cannot pass by a line of code without understand-

ing it completely, start with the Ruby chapters (Chapter 2, Program-

ming Ruby, on page 38 and Chapter 3, Ruby Eye for the Java Guy,

on page 72). Ruby is radically different from Java, even more than the

syntax suggests. Your investment will pay for itself quickly.

If you are the “getting things done” type, jump straight into Rails, which

begins with Chapter 4, Accessing Data with ActiveRecord, on page 96

and continues through the rest of the book. When you see Ruby idioms

that interest you, you can always return to the chapters about the Ruby

language. (If you don’t know the Ruby name for something, just use

Appendix A, on page 303. The dictionary is organized by Java terminol-

ogy and includes pointers to relevant sections in the book.)

Other than that, feel free to skip around. The book is extensively cross-

referenced throughout, so you cannot get too lost.

Make sure you follow the instructions in the next section for download-

ing the sample code. Ruby and Rails enable an interactive development

experience, and you will learn much more if you follow along with the

examples.

How to Get Sample Code

The sample code for the book uses Rails version 1.1.6 or newer1 and

Ruby version 1.8.4 or newer. All the sample code for the book is avail-

able as a single zip file online.2

The sample code includes two Rails applications, named People and

Rails XT. The People application is extremely simple and demonstrates

how to use Rails to create a front end for a single database table. We

build the entire People application from scratch as we go through the

book. Section 1.2, Rails App in Fifteen Minutes, on page 21 has instruc-

tions to set up the People application.

Rails XT stands for “Rails Exploration Testing.” The Rails XT appli-

cation doesn’t have a unified feature set that addresses some problem

domain. Instead, Rails XT is a holding tank for dozens of fragments that

1. A few examples rely on features in Rails 1.2, which is still under development as of

this writing. These examples are noted in the text as they occur.
2. See http://pragmaticprogrammer.com/titles/fr_rails4java/code.html

http://pragmaticprogrammer.com/titles/fr_rails4java/code.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=16


PREFACE 17

demonstrate Rails’ capabilities. Because of its heterogeneous nature,

Rails XT requires a bit more setup. You don’t need to set up Rails XT

to get started. When you need to do so, you can find instructions in the

sidebar on page 98. Here is a quick overview of the sample directory

structure:

rails_xt

This contains the Rails exploration tests (see Section 1.6, Run-

ning the Unit Tests, on page 32) and the Quips sample application.

Throughout the book, Ruby examples should be executed from

this directory unless otherwise noted.

java_xt

You will use the Java exploration tests throughout the book.

appfuse_people

You will use the Java People application throughout the book.

junit4

You will find any tests that require JUnit4 here.

Rake

This includes Rake and Ant examples from Chapter 8, Automating

the Development Process, on page 233.

hibernate_examples

This includes Hibernate examples from Chapter 4, Accessing Data

with ActiveRecord, on page 96.

The Java examples are split into several directories to simplify class-

path management. That way, you can install just the libraries you need.

For example, you don’t need to install Struts, Hibernate, and so on, to

run the language examples in java_xt.

How We Developed the Java Examples

This is a book about two worlds: the world of Java programming and the

world of Rails programming. Whenever worlds collide, you can expect

to hear statements like “Java sucks, and Rails rocks...” (or the reverse).

You won’t hear that tone here. To us, that is like a carpenter saying

“Hammers suck, and saws rock.” Carpenters use many tools, and pro-

grammers should too. More important, the confrontational approach

limits an important opportunity. When you have multiple ways to solve

a problem, you can learn a lot by comparing them.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=17


PREFACE 18

Our goal in visiting this new world (Rails) is to learn by comparison

with our shared history (Java). But what exactly is our shared history?

Ruby on Rails is a web framework, which means you could compare

it to about a gazillion things in the Java world. Should we look at

Java? Plain servlets? Servlets plus JSP? Aged MVC frameworks such

as Struts? Rich component frameworks such as Tapestry? Java EE

standard architectures such as JSF? Or all of these?

When we needed a Java baseline to compare with Rails, we chose

Struts, Hibernate, and Axis. We picked these because our careful sta-

tistical research indicated these were best-known among Java develop- (We asked a lot of

people.)
ers. Moreover, we limit our Java usage to techniques that are typical in

applications we have seen in the field. As a result, the Java code in this

book should look familiar to most Java web developers.

The downside of this approach is that “typical” and “familiar” Java code

is not necessarily best practice. So although this approach is useful

for teaching Rails, it does not provide a comprehensive review of Java

best practices. (That’s a whole ’nother book.) Where we have skipped

interesting Java approaches for reasons of space, we have included

margin notes and references at the ends of the chapters.

Many of the Java examples are built starting with Matt Raible’s excel-

lent AppFuse (http://www.appfuse.org). AppFuse is a metaframework that

allows you to quickly jump-start a web application using the frame-

works of your choice. If you want to compare Rails to Java frameworks

not covered in this book, AppFuse is a great place to start.

Acknowledgments

We would like to thank our wives. Joey and Lisa, none of this would

have happened, or would have meant as much, without you. We would

also like to thank our extended families. Without your love and support,

this book would have been stalled until at least 2025.

Thanks to our reviewers: David Bock, Ed Burns, Scott Davis, Mark

Richards, Ian Roughley, Brian Sletten, Venkat Subramaniam, Bruce

Tate, and Glenn Vanderburg. We would never have believed that such a

talented, busy group of people could devote so much time and attention

to this project. Thank you; this book is immeasurably better for it.

To the Pragmatic Programmers: Thank you for building the kind of pub-

lishing company that can produce a book like this, on this timeline. You

are consummate professionals.

http://www.appfuse.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=18


PREFACE 19

To the Relevance Gang: We are in for an exciting ride. Thanks for your

smarts, thanks for your excellent work, but thanks most for the fun

environment.

To the Pragmatic Studio: Thanks for leading the way in getting Ruby

and Rails people together, all over the country. We can’t wait for the

first Rails Edge.

To the No Fluff, Just Stuff Gang: Thanks for sharing our secret lives.

Our ideas about Java (and Ruby) are sharpened every weekend at our

semiclandestine encounters.

To Jay Zimmerman: Thanks for building a community around excellent

people and around excellence in software development.

To James Duncan Davidson: Thanks for spreading the Mac meme.

To Neal Ford: Thanks for the cross-the-board expertise, from agility and

DSLs all the way to food and fashion. Who says we have to specialize?

To Bruce Tate: Thanks for helping kick-start our Rails consulting busi-

ness and for being a companion in our professional journey. You were

country when country wasn’t cool.

To Dave Thomas: You make everything around you better, and you have

fun doing it. Thanks for your inestimable contributions to Ruby, to

Rails, and to our work.

To Jim Weirich: Thanks for the just-in-time technical support on Flex-

Mock questions.

To Al von Ruff: Thanks for your work on the Internet Speculative Fiction

Database.3 We have enjoyed it as readers, and we particularly appreci-

ate you making the schema and data available for some of the examples

in this book.

To Matt Raible: Thanks for AppFuse. Without it we’d still be in a bot-

tomless pit of XML configuration files.

To the folks at Coke, Pepsi, Red Bull, Macallan, and Lagavulin: Thank Yes, we drink both Coke

and Pepsi. And we like

both Java and Ruby.you for the beverages that fueled this book. Bet you can’t guess which

drinks go with which chapters!

3. http://www.isfdb.org

http://www.isfdb.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=19

	Contents
	Foreword
	Preface
	Getting Started with Rails
	Setting Up Ruby and Rails
	Rails App in Fifteen Minutes
	The Rails Development Cycle
	Finding Information in Online Documentation
	Editors and IDEs
	Running the Samples
	Rails Environments
	How Rails Connects to Databases
	Rails Support Scripts

	Programming Ruby
	Primitive Types
	Strings
	Objects and Methods
	Collections and Iteration
	Control Flow
	Defining Classes
	Identity and Equality
	Inheritance
	Controlling Access with Access Specifiers
	Raising and Handling Exceptions

	Ruby Eye for the Java Guy
	Extending Core Classes
	Mutable and Immutable Objects
	Packages and Namespaces
	Deploying Code
	Delegation
	Polymorphism and Interfaces
	Duck Typing
	Mixins
	Functions

	Accessing Data with ActiveRecord
	Getting Connected
	Managing Schema Versions with Migrations
	Mapping Data to Classes
	Create, Read, Update, and Delete: Access Patterns
	Validating Data Values
	Lifecycle Callbacks
	Associations and Inheritance
	Transactions, Concurrency, and Performance
	Conserving Resources with Connection Pooling
	Resources

	Coordinating Activities with ActionController
	Routing Basics: From URL to Controller+Method
	List and Show Actions: The R in CRUD
	Create, Update, and Delete Actions
	Tracking User State with Sessions
	Managing Cross-Cutting Concerns with Filters and Verify
	Routing in Depth
	Logging, Debugging, and Benchmarking
	Resources

	Rendering Output with ActionView
	Creating Basic .rhtml Files
	Minimizing View Code with View Helpers
	Writing Custom Helpers
	Reuse with Layouts and Partials
	Building HTML Forms
	Building HTML with Markaby
	Caching Pages, Actions, and Fragments
	Creating Dynamic Pages with Ajax
	Rendering JavaScript with RJS
	Black-Box Testing with Selenium
	Conclusions
	Resources

	Testing
	Getting Started with Test::Unit
	Rails Testing Conventions
	Rails Extensions to Test::Unit
	Integration Testing
	Rails Testing Examples
	Measuring Code Coverage with rcov
	Testing Interactions with Mock Objects
	Reducing Dependencies with Stub Objects
	Advanced Considerations
	Resources

	Automating the Development Process
	Rake Basics
	Setting Rake Options: It's Just Ruby
	Custom Rake Tasks: It's Just Ruby
	Using Rake in Rails Applications
	Continuous Integration with Cerberus
	Resources

	Creating and Invoking Web Services
	RESTful Web Services
	SOAP Web Services
	YAML and XML Compared
	JSON and Rails
	XML Parsing
	Ruby XML Output
	Creating XML with Builder
	Curing Your Data Headache
	Resources

	Security
	Authentication with the acts_as_authenticated Plugin
	Authorization with the Authorization Plugin
	Testing Authentication and Authorization
	Preventing the Top-Ten Web Security Flaws
	Resources

	Java to Ruby Dictionary
	Bibliography
	Structure of a Rails Project
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




