
Preface
Ruby on Rails is a full-stack framework for developing web applications.

Rails embraces many good ideas that are familiar in the Java world: the

Model-View-Controller (MVC) pattern, unit testing, agile development,

the ActiveRecord pattern, and many others. At the same time, Rails

challenges many standard practices: Instead of miles of XML configu-

ration files, Rails relies on conventions where possible. Rails is built

with Ruby, a dynamic language, and is deployed as source code.

But forget the technical points for a moment. The reason that any of

this matters is that Rails programmers are getting things done, and

fast. Rails programmers have made (and substantiated) some amazing

claims about developer productivity. They are having a lot of fun, too.

Should Java programmers be alarmed by this upstart? Absolutely not.

Java programmers are uniquely positioned to take advantage of Ruby

on Rails. This book will explain how to get started.

Who Should Read This Book?

This book is for all Java programmers. OK, let us narrow that down a

little. This book is for two subsets of Java programmers:

• Those who want to program in Ruby and Rails

• Those who do not

To the first group: We wrote this book because we love Java, and we

love Rails. We believe that Java programmers are uniquely qualified to

take advantage of Rails, because Java programmers have lived through

a lot of the struggles behind the good (and sometimes controversial)

ideas in Rails.

To the second group: Rails is not for everything, just like any other tool

isn’t. However, Rails is such an interesting tool, and Ruby is different
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from Java in so many fascinating ways, that we think it is the single

best complement you can learn to round out your skill set.

To both groups: We have had a great time writing this book, because

we share a common language with you, our readers. By assuming a

common vocabulary of the Java language and patterns, we are able to

move quickly to the meat of topics. We believe that, page for page, this

is a much better book for Java developers than a general-purpose book

can ever be. Yes, that’s bragging, and we are boasting about you, our

fellow Java developers. Thanks for all the work you have put in to build

a baseline of industry knowledge on which we hope to build.

Why This Rails Book?

A lot of Rails books exist. One aspect that sets this book apart is our

Java background. We focus on the parts of Rails that will be different,

new, and interesting to a Java developer.

The second aspect that sets this book apart is our emphasis on Rails

as an ecosystem, not just as a framework. As a Java developer, you are

accustomed to having an enormous ecosystem around your program-

ming language. You have great IDEs, monitoring tools, and widgets

for every situation. Rails has an ecosystem too—not as big as Java’s

but important nevertheless. In this book, we spend less time hashing

through every random API detail in Rails. Instead, we demonstrate the

key points and then move into the ecosystem to show how those key

points are used, extended, and sometimes even replaced.

Who Should Read Some Other Book?

This book is a reference for experienced Java programmers who want to

learn Ruby and Rails. This is not a tutorial where each chapter walks

you through building some sample application. For a tutorial, plus a

general introduction to the Ruby language, we recommend Program-

ming Ruby [TFH05]. For a tutorial and introduction to Rails, we recom-

mend Agile Web Development with Rails [TH06].

This book is not a comparison of Java and Ruby for managers consider-

ing a Ruby project. For that, we recommend From Java to Ruby: Things

Every Manager Should Know [Tat06].

This book is not an introduction for nonprogrammers; for that we rec-

ommend Learn to Program [Pin06].

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=14
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Why Ruby on Rails?

Rails is making programmers productive and happy. Plus, we are find-

ing that using Ruby exercises our minds more than any other main-

stream language. If you want to start a watercooler conversation about

the merits of Ruby and Rails, here are a few talking points:

• Full-stack web framework. Rails includes everything you need:

Model-View-Controller, O/RM, unit testing, and build and deploy-

ment automation. Because everything is tightly integrated, it is

ridiculously easy to get started.

• Opinionated software. Rails is not designed to let you do anything.

It is designed to help you do the right things.

• Convention over configuration. The danger of both the previous

points is that you might not be able to customize the framework to

meet your needs. Rails avoids this with convention over configura-

tion. All of Rails’ moving parts are held together by convention, but

you can override those conventions whenever you need to do so.

You get to pay as you go, relying on conventions where necessary

and overriding only exactly what you need.

• One language for application and configuration. Rails uses Ruby

for configuration as well as for application code. Ruby is easier to

manage than XML and much more powerful when configuration

becomes complex.

• The secret sauce is Ruby. Ruby is powerful and elegant, and it

has become the language we think in most of the time. Ruby

includes good ideas from mainstream programming languages. As

a Java programmer, you will have a head start in understanding

Ruby’s approach to classes, objects, inheritance, and polymor-

phism. Ruby also includes many features of Smalltalk and Lisp

that are missing from mainstream languages. As a Java program-

mer, you will be delighted to discover how blocks, closures, duck

typing, metaprogramming, and functional programming can make

your code more expressive and maintainable. Rails is the gateway

drug; Ruby is the addiction.

How to Read This Book

All readers should read the entirety of Chapter 1, Getting Started with

Rails, on page 20. The chapter includes instructions for quickly setting

up your environment so you can follow along with all the example code.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=15
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Next you have a choice: Ruby first or Rails first? If you are a bottom-

up learner who cannot pass by a line of code without understand-

ing it completely, start with the Ruby chapters (Chapter 2, Program-

ming Ruby, on page 38 and Chapter 3, Ruby Eye for the Java Guy,

on page 72). Ruby is radically different from Java, even more than the

syntax suggests. Your investment will pay for itself quickly.

If you are the “getting things done” type, jump straight into Rails, which

begins with Chapter 4, Accessing Data with ActiveRecord, on page 96

and continues through the rest of the book. When you see Ruby idioms

that interest you, you can always return to the chapters about the Ruby

language. (If you don’t know the Ruby name for something, just use

Appendix A, on page 303. The dictionary is organized by Java terminol-

ogy and includes pointers to relevant sections in the book.)

Other than that, feel free to skip around. The book is extensively cross-

referenced throughout, so you cannot get too lost.

Make sure you follow the instructions in the next section for download-

ing the sample code. Ruby and Rails enable an interactive development

experience, and you will learn much more if you follow along with the

examples.

How to Get Sample Code

The sample code for the book uses Rails version 1.1.6 or newer1 and

Ruby version 1.8.4 or newer. All the sample code for the book is avail-

able as a single zip file online.2

The sample code includes two Rails applications, named People and

Rails XT. The People application is extremely simple and demonstrates

how to use Rails to create a front end for a single database table. We

build the entire People application from scratch as we go through the

book. Section 1.2, Rails App in Fifteen Minutes, on page 21 has instruc-

tions to set up the People application.

Rails XT stands for “Rails Exploration Testing.” The Rails XT appli-

cation doesn’t have a unified feature set that addresses some problem

domain. Instead, Rails XT is a holding tank for dozens of fragments that

1. A few examples rely on features in Rails 1.2, which is still under development as of

this writing. These examples are noted in the text as they occur.
2. See http://pragmaticprogrammer.com/titles/fr_rails4java/code.html

http://pragmaticprogrammer.com/titles/fr_rails4java/code.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=16
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demonstrate Rails’ capabilities. Because of its heterogeneous nature,

Rails XT requires a bit more setup. You don’t need to set up Rails XT

to get started. When you need to do so, you can find instructions in the

sidebar on page 98. Here is a quick overview of the sample directory

structure:

rails_xt

This contains the Rails exploration tests (see Section 1.6, Run-

ning the Unit Tests, on page 32) and the Quips sample application.

Throughout the book, Ruby examples should be executed from

this directory unless otherwise noted.

java_xt

You will use the Java exploration tests throughout the book.

appfuse_people

You will use the Java People application throughout the book.

junit4

You will find any tests that require JUnit4 here.

Rake

This includes Rake and Ant examples from Chapter 8, Automating

the Development Process, on page 233.

hibernate_examples

This includes Hibernate examples from Chapter 4, Accessing Data

with ActiveRecord, on page 96.

The Java examples are split into several directories to simplify class-

path management. That way, you can install just the libraries you need.

For example, you don’t need to install Struts, Hibernate, and so on, to

run the language examples in java_xt.

How We Developed the Java Examples

This is a book about two worlds: the world of Java programming and the

world of Rails programming. Whenever worlds collide, you can expect

to hear statements like “Java sucks, and Rails rocks...” (or the reverse).

You won’t hear that tone here. To us, that is like a carpenter saying

“Hammers suck, and saws rock.” Carpenters use many tools, and pro-

grammers should too. More important, the confrontational approach

limits an important opportunity. When you have multiple ways to solve

a problem, you can learn a lot by comparing them.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=17
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Our goal in visiting this new world (Rails) is to learn by comparison

with our shared history (Java). But what exactly is our shared history?

Ruby on Rails is a web framework, which means you could compare

it to about a gazillion things in the Java world. Should we look at

Java? Plain servlets? Servlets plus JSP? Aged MVC frameworks such

as Struts? Rich component frameworks such as Tapestry? Java EE

standard architectures such as JSF? Or all of these?

When we needed a Java baseline to compare with Rails, we chose

Struts, Hibernate, and Axis. We picked these because our careful sta-

tistical research indicated these were best-known among Java develop- (We asked a lot of

people.)
ers. Moreover, we limit our Java usage to techniques that are typical in

applications we have seen in the field. As a result, the Java code in this

book should look familiar to most Java web developers.

The downside of this approach is that “typical” and “familiar” Java code

is not necessarily best practice. So although this approach is useful

for teaching Rails, it does not provide a comprehensive review of Java

best practices. (That’s a whole ’nother book.) Where we have skipped

interesting Java approaches for reasons of space, we have included

margin notes and references at the ends of the chapters.

Many of the Java examples are built starting with Matt Raible’s excel-

lent AppFuse (http://www.appfuse.org). AppFuse is a metaframework that

allows you to quickly jump-start a web application using the frame-

works of your choice. If you want to compare Rails to Java frameworks

not covered in this book, AppFuse is a great place to start.
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