
xxi

Foreword by Stanley B. Lippman

It is with great satisfaction that I introduce you to Stephen’s excellent new book, Pro Visual C++/CLI
and the .NET 2.0 Platform, the first detailed treatment of what has been standardized under ECMA as
C++/CLI. Of course, any text, no matter how excellent, is itself incomplete, like a three-walled room.
The fourth wall, in this case, is you, the reader. You complete the text by exercising the code samples,
poking around with them, and finally writing your own code. That’s really the only way to develop a
deep understanding of this stuff. But having an experienced guide to step you through the hazards of
any new language is priceless, and this is what Stephen’s text accomplishes. I cannot recommend it
too highly.

With Stephen’s indulgence, I would like to give you a short overview of the ideas behind the
language’s original design and place it in the context of the design and evolution of C++ itself. The
first question people ask is, “So what is C++/CLI?”

C++/CLI is a self-contained, component-based dynamic programming language that, like C#
or Java, is derived from C++. Unlike those languages, however, we have worked hard to integrate
C++/CLI into ISO-C++, using the historical model of evolving the C/C++ programming language to
support modern programming paradigms. Historically, one can say that C++/CLI is to C++ as C++ is
to C. More generally, one can view the evolution leading to C++/CLI in the following historical context:

• BCPL (Basic Computer Programming Language)

• B (Ken Thompson, original Unix work ...)

• C (Dennis Ritchie, adding type and control structure to B ...)

• C with Classes (~1979)

• C84 (~1984) ...

• Cfront, release E (~1984, to universities) ...

• Cfront, release 1.0 (1985, to the world)—20th birthday !!!

• Multiple/Virtual Inheritance Programming (~1988) (MI)

• Generic Programming (~1991) (Templates)

• ANSI C++/ISO-C++ (~1996)

• Dynamic Component Programming (~2005) (C++/CLI)

C++/CLI represents a tuple. The first term, C++, refers of course to the C++ programming
language invented by Bjarne Stroustrup at Bell Laboratories. It supports a static object model that is
optimized for the speed and size of its executables. It does not support runtime modification of the
program other than, of course, heap allocation. It allows unlimited access to the underlying machine, but
very little access to the types active in the running program, and no real access to the associated infra-
structure of that program.

The third term, CLI, refers to the Common Language Infrastructure, a multitiered architecture
supporting a dynamic component programming model. In many ways, this represents a complete
reversal of the C++ object model. A runtime software layer, the virtual execution system, runs between
the program and the underlying operating system. Access to the underlying machine is fairly

Fraser_640-4Front.fm Page xxi Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

xxii ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

constrained. Access to the types active in the executing program and the associated program infra-
structure—both as discovery and construction—is supported.

The second term, slash (/), represents a binding between C++ and the CLI.
So, a first approximation of an answer as to “What is C++/CLI?” is to say that it is a binding of the

static C++ object model with the dynamic component object model of the CLI. In short, it is how
we do .NET programming using C++ rather than, say, C# or Visual Basic. Like C# and the CLI itself,
C++/CLI is undergoing standardization under ECMA (and eventually under ISO).

The common language runtime (CLR) is the implementation of the CLI that is platform specific
to the Windows operating system. Similarly, Visual C++ 2005 is our implementation of C++/CLI.

So, as a second approximation of an answer, I would say that C++/CLI integrates the .NET
programming model within C++ in the same way as, back at Bell Laboratories, we integrated generic
programming using templates within the then existing C++. In both cases, both your investment in
an existing C++ code base and in your existing C++ expertise are preserved. This was an essential
baseline requirement of the design of C++/CLI.

What Does Learning C++/CLI Involve?
There are three aspects in the design of a CLI language that hold across all languages: (1) a mapping
of language-level syntax to the underlying Common Type System (CTS); (2) the choice of a level of
detail to expose the underlying CLI infrastructure to the direct manipulation of the programmer;
and, (3) the choice of additional functionality to provide over that supported directly by the CLI.
A fourth element of designing a CLI extension to an existing language, such as C++ or Ada, requires a
fourth aspect: (4) that of integrating the managed and native type systems. We’ll briefly look at an
example of each in turn.

How Does C++/CLI Map to the CTS?
One aspect of programming C++/CLI is learning the underlying Common Type System, which
includes three general class types:

1. A polymorphic reference type that is used for all class inheritance

2. A nonpolymorphic value type that is used for implementing concrete types requiring
runtime efficiency such as the numeric types

3. An abstract interface type that is used for defining a set of operations common to a set of
either reference or value types that implement the interface

This design aspect, the mapping of the CTS to a set of built-in language types, is common across
all CLI languages, although of course the syntax varies in each CLI language. So, for example, in C#,
one writes

abstract class Shape { ... } // C#

to define an abstract Shape base class from which specific geometric objects are to be derived,
while in C++/CLI one writes

ref class Shape abstract { ... }; // C++/CLI

to indicate the exact same underlying CLI reference type. The two declarations are represented
exactly the same in the underlying CIL. Similarly, in C#, one writes

struct Point2D { ... } // C#

Fraser_640-4Front.fm Page xxii Friday, November 18, 2005 3:42 PM

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxiii

to define a concrete Point2D class, while in C++/CLI one writes

value class Point2D { ... }; // C++/CLI

The family of class types supported with C++/CLI represents an integration of the CTS with the
native facilities, of course, and that determined our choice of syntax. For example:

class native {};
value class V {};
ref class R {};
interface class I {};

The CTS also supports an enumeration class type that behaves somewhat differently from the
native enumeration, and we provide support for both of those as well:

enum native { fail, pass };
enum class CLIEnum : char { fail, pass};

Similarly, the CTS supports its own array type that again behaves differently from the native
array. And again we provide support for both:

int native[] = { 1,1,2,3,5,8 };
array<int>^ managed = { 1,1,2,3,5,8 };

It is not true to think of any one CLI language as closer to or more nearly a mapping to the under-
lying CTS than is another. Rather, each CLI language represents a view into the underlying CTS
object model.

What Level of Detail of the CLI Does
C++/CLI Expose?
The second design aspect reflects the level of detail of the underlying CLI implementation model to
incorporate into the language. How does one go about determining this? Essentially, we need to ask
these questions:

• What are the kinds of problems the language is likely to be tasked to solve? We must make sure
the language has the tools necessary to do this.

• What are the kinds of programmers the language is likely to attract?

Let’s look at an example: the issue of value types occurring on the managed heap. Value types
can find themselves on the managed heap in a number of circumstances:

• Implicit boxing

• We assign an object of a value type to an Object.

• We invoke a virtual method through a value type that is not overridden.

• When a value type serves as a member of a reference class type

• When a value type is being stored as the element type of a CLI array

Fraser_640-4Front.fm Page xxiii Friday, November 18, 2005 3:42 PM

xxiv ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

The design question a CLI language has to ask is, “Should we allow the programmer to manipulate
the address of a value type of this sort?”

What are the issues?
Any object located on the managed heap is subject to relocation during the compaction phase

of a sweep of the garbage collector. Any pointers to that object must be tracked and updated by the
runtime; the programmer has no way to manually track it herself. Therefore, if we were to allow the
programmer to take the address of a value type potentially resident on the managed heap, we would
need to introduce a tracking form of pointer in addition to the existing native pointer.

What are the trade-offs to consider? On the one hand, simplicity and safety.

• Directly introducing support in the language for one or a family of tracking pointers makes it
a more complicated language. By not supporting this, we expand the available pool of
programmers by requiring less sophistication.

• Allowing the programmer access to these ephemeral value types increases the possibility of
programmer error—she may purposely or by accident do bad things to the memory. By not
supporting this, we create a potentially safer runtime environment.

On the other hand, efficiency and flexibility.

• Each time we assign the same Object with a value type, a new boxing of the value occurs.
Allowing access to the boxed value type allows in-memory update, which may provide signif-
icant performance ...

• Without a form of tracking pointer, we cannot iterate over a CLI array using pointer arithmetic.
This means that the CLI array cannot participate in the STL iterator pattern and work with the
generic algorithms. Allowing access to the boxed value type allows significant design flexibility.

We chose in C++/CLI to provide a collection of addressing modes that handle value types on the
managed heap.

int ival = 1024;

// int^ provides a tracking handle for
// direct read/write access to a boxed value type ...
int^ boxedi = ival;

array<int>^ ia = gcnew array<int>{1,1,2,3,5,8};

// interior_ptr<T> supports indexing into the GC heap ...
interior_ptr<int> begin = &ia[0];

value struct smallInt { int m_ival; ... } si;
pin_ptr<int> ppi = &si.m_ival;

We imagine the C++/CLI programmer to be a sophisticated system programmer tasked with
providing infrastructure and organizationally critical applications that serve as the foundation over
which a business builds its future. She must address both scalability and performance concerns and
must therefore have a system-level view into the underlying CLI. The level of detail of a CLI language
reflects the face of its programmer.

Complexity is not in itself a negative quality. Human beings, for example, are more complicated
than single-cell bacteria, but that is, I think we all agree, not a bad thing. When the expression of a
simple concept is complicated, that is a bad thing. In C++/CLI, we have tried to provide an elegant
expression to a complex subject matter.

Fraser_640-4Front.fm Page xxiv Friday, November 18, 2005 3:42 PM

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxv

What Does C++/CLI Add Over That of the CLI?
A third design aspect is a language-specific layer of functionality over that directly supported by the
CLI. This may require a mapping between the language-level support and the underlying implemen-
tation model of the CLI. In some cases, this just isn’t possible because the language cannot intercede
with the behavior of the CLI. One example of this is the virtual function resolution in the constructor
and destructor of a base class. To reflect ISO-C++ semantics in this case would require a resetting of
the virtual table within each base class constructor and destructor. This is not possible because
virtual table handling is managed by the runtime and not the individual language.

So this design aspect is a compromise between what we might wish to do, and what we find
ourselves able to do. The three primary areas of additional functionality provided by C++/CLI are
the following:

• A form of Resource Acquisition is Initialization (RAII) for reference types. In particular,
to provide an automated facility for what is referred to as deterministic finalization of garbage
collected types that hold scarce resources.

• A form of deep-copy semantics associated with the C++ copy constructor and copy assign-
ment operator; however, this could not be extended to value types.

• Direct support of C++ templates for CTS types in addition to the CLI generic mechanism—this
had been the topic of my original first column. In addition, we provide a verifiable version of
the Standard Template Library for CLI types.

Let’s look at a brief example: the issue of deterministic finalization.
Before the memory associated with an object is reclaimed by the garbage collector, an associated

Finalize() method, if present, is invoked. You can think of this method as a kind of super-destructor
since it is not tied to the program lifetime of the object. We refer to this as finalization. The timing of
just when or even whether a Finalize() method is invoked is undefined. This is what is meant when
we say that garbage collection exhibits nondeterministic finalization.

Nondeterministic finalization works well with dynamic memory management. When available
memory gets sufficiently scarce, the garbage collector kicks in and things pretty much just work.
Nondeterministic finalization does not work well, however, when an object maintains a critical
resource such as a database connection, a lock of some sort, or perhaps native heap memory. In this
case, we would like to release the resource as soon as it is no longer needed. The solution currently
supported by the CLI is for a class to free the resources in its implementation of the Dispose() method
of the IDisposable interface. The problem here is that Dispose() requires an explicit invocation, and
therefore is liable not to be invoked.

A fundamental design pattern in C++ is spoken of as Resource Acquisition is Initialization. That
is, a class acquires resources within its constructor. Conversely, a class frees its resources within its
destructor. This is managed automatically within the lifetime of the class object.

This is what we would like to do with reference types in terms of the freeing of scarce resources:

• Use the destructor to encapsulate the necessary code for the freeing of any resources associ-
ated with the class.

• Have the destructor automatic invocation tied with the lifetime of the class object.

The CLI has no notion of the class destructor for a reference type. So the destructor has to be
mapped into something else in the underlying implementation. Internally, then, the compiler does
the following transformations:

• The class has its base class list extended to inherit from the IDisposable interface.

• The destructor is transformed into the Dispose() method of IDisposable.

Fraser_640-4Front.fm Page xxv Friday, November 18, 2005 3:42 PM

xxvi ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

That gets us half the way to our goal. We still need a way to automate the invocation of the
destructor. A special stack-based notation for a reference type is supported; that is, one in which its
lifetime is associated within the scope of its declaration. Internally, the compiler transforms the
notation to allocate the reference object on the managed heap. With the termination of the scope,
the compiler inserts an invocation of the Dispose() method—the user-defined destructor. Reclamation
of the actual memory associated with the object remains under the control of the garbage collector.

Let’s look at a code example.

ref class Wrapper {
 Native *pn;
public:
 // resource acquisition is initialization
 Wrapper(int val) { pn = new Native(val); }

 // this will do our disposition of the native memory
 ~Wrapper(){ delete pn; }

 void mfunc();
protected:

 // an explicit Finalize() method - as a failsafe ...
 ! Wrapper() { delete pn; }
};

void f1()
{
 // normal treatment of a reference type ...
 Wrapper^ w1 = gcnew Wrapper(1024);

 // mapping a reference type to a lifetime ...
 Wrapper w2(2048); // no ^ token !

 // just illustrating a semantic difference ...
 w1->mfunc(); w2.mfunc();

 // w2 is disposed of here
}

//
// ... later, w1 is finalized at some point, maybe ...

C++/CLI is not just an extension of C++ into the managed world. Rather, it represents a fully
integrated programming paradigm similar in extent to the earlier integration of the multiple inheritance
and generic programming paradigms into the language. I think the team has done an outstanding job.

Fraser_640-4Front.fm Page xxvi Friday, November 18, 2005 3:42 PM

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxvii

Integrating C++/CLI with ISO-C++
The type of a string literal, such as "Pooh", is treated differently within C++/CLI; it is more nearly a
kind of System::String than a C-style character string pointer. This has a visible impact with regard
to the resolution of overload functions. For example:

public ref class R {
public:
 void foo(System::String^); // (1)
 void foo(std::string); // (2)
 void foo(const char*); // (3)
};

void bar(R^ r)
{
 // which one?
 r->foo("Pooh");
}

In ISO-C++, this resolves to instance (3)—a string literal is more nearly a kind of constant pointer
to character than it is an ISO-C++ standard library string type. Under C++/CLI, however, this call
resolves to (1)—a string literal is now more nearly a kind of System::String than pointer to character.
The type of a string literal is treated differently within C++/CLI. It has been designed to be more
nearly a kind of System::String than a C-style character string pointer.

void foo(System::String^); // (1)
void foo(std::string); // (2)
void foo(const char*); // (3)

void bar(R^ r){ r->foo("Pooh"); } // which foo?

ISO-C++: // (3) is invoked ...
C++/CLI: // (1) is invoked ...

So, What Did You Say About C++/CLI?
C++/CLI represents an integration of native and managed programming. In this iteration, we have
done that through a kind of separate but equal community of source-level and binary elements:

• Mixed mode: source-level mix of native and CTS types plus binary mix of native and CIL
object files. (Compiler switch: \clr.)

• Pure mode: source-level mix of native and CTS types. All compiled to CIL object files.
(Compiler switch: \clr:pure.)

• Native class can hold CTS types through a special wrapper class only.

• CTS classes can hold native types only as pointers.

Of course, the C++/CLI programmer can also choose to program with the .NET managed types
only, and in this way provide verifiable code, using the \clr:safe Visual C++ compiler switch.

Fraser_640-4Front.fm Page xxvii Friday, November 18, 2005 3:42 PM

	Pro Visual C++/CLI and the .NET 2.0 Platform
	Table of Content
	PART 1 The C++/CLI Language
	Chapter 1 Overview of the .NET Framework
	Chapter 2 C++/CLI Basics
	Chapter 3 Object-Oriented C++/CLI
	Chapter 4 Advanced C++/CLI

	PART 2 .NET Framework Development in C++/CLI
	Chapter 5 The .NET Framework Class Library
	Chapter 6 Integrated XML Documentation
	Chapter 7 Collections
	Chapter 8 Input, Output, and Serialization
	Chapter 9 Basic Windows Forms Applications
	Chapter 10 Advanced Windows Forms Applications
	Chapter 11 Graphics Using GDI+
	Chapter 12 ADO.NET and Database Development
	Chapter 13 XML
	Chapter 14 Windows Services
	Chapter 15 Web Services
	Chapter 16 Multithreaded Programming
	Chapter 17 Network Programming
	Chapter 18 Assembly Programming
	Chapter 19 Security

	PART 3 Unsafe/Unmanaged C++/CLI
	Chapter 20 Unsafe C++ .NET Programming
	Chapter 21 Advanced Unsafe or Unmanaged C++ .NET Programming

	Index

