Introduction

WW was this book written? To tell the truth, I don’t think I had much choice in this matter.
This book is a revision and extension of my earlier book, Inside Microsoft .NET IL Assembler,
which hit the shelves in early 2002, about a month after the release of version 1.0 of the .NET
common language infrastructure (CLI). So, it is fairly obvious why I had to write this new book
now, more than four years later, when the more powerful version 2.0 of the .NET CLI has just
been released. And I don’t think I had much choice in the matter of writing the first book
either, because somebody had to start writing about the .NET CLI inner workings.

The .NET universe, like other information technology universes, resembles a great pyra-
mid turned upside down and standing on its tip. The tip on which the .NET pyramid stands is
the common language runtime. The runtime converts the intermediate language (IL) binary
code into platform-specific (native) machine code and executes it. Resting on top of the run-
time are the .NET Framework class library, the compilers, and environments such as Microsoft
Visual Studio. And above them begin the layers of application development, from instrumen-
tal to end user oriented. The pyramid quickly grows higher and wider.

This book is not exactly about the common language runtime—even though it’s only the
tip of the .NET pyramid, the runtime is too vast a topic to be described in detail in any book of
reasonable (say, luggable) size. Rather, this book focuses on the next best thing: the NET IL
assembler. IL assembly language (ILAsm) is a low-level language, specifically designed to
describe every functional feature of the common language runtime. If the runtime can do it,
ILAsm must be able to express it.

Unlike high-level languages, and like other assembly languages, ILAsm is platform-driven
rather than concept-driven. An assembly language usually is an exact linguistic mapping of
the underlying platform, which in this case is the common language runtime. It is, in fact,
so exact a mapping that this language is used for describing aspects of the runtime in the
ECMA/ISO standardization documents regarding the .NET common language infrastructure.
(ILAsm itself, as part of the common language infrastructure, is a subject of this standardiza-
tion effort as well.) As a result of the close mapping, it is impossible to describe an assembly
language without going into significant detail about the underlying platform. So, to a great
extent, this book is about the common language runtime after all.

The IL assembly language is very popular among .NET developers. No, I am not claiming
that all .NET developers prefer to program in ILAsm rather than in Visual C++/CLI, C#, or
Visual Basic. But all .NET developers use the IL disassembler now and then, and many use it
on aregular basis. A cyan thunderbolt—the IL disassembler icon (a silent praise for David
Drake and his “Hammer’s Slammers”)—glows on the computer screens of .NET developers
regardless of their language preferences and problem areas. And the text output of the IL
disassembler is ILAsm source code.

Virtually all books about .NET-based programming that are devoted to high-level pro-
gramming languages such as C# or Visual Basic or to techniques such as ADO.NET at some
moment mention the IL disassembler as a tool of choice to analyze the innards of a .NET
managed executable. But these volumes stop short of explaining what the disassembly text

XXV



XXVi

INTRODUCTION

means and how to interpret it. This is an understandable choice, given the topics of these
books; the detailed description of metadata structuring and IL assembly language represents
a separate issue.

Now perhaps you see what I mean when I say I had no choice but to write this book.
Someone had to, and because I had been given the responsibility of designing and developing
the IL assembler and disassembler, it was my obligation to see it through all the way:.

History of ILAsm, Part |

The first versions of the IL assembler and IL disassembler were developed in early 1998 by
Jonathan Forbes. The current language is very different from this original one, the only dis-
tinct common feature being the leading dots in the directive keywords. The assembler and
disassembler were built as purely internal tools facilitating the ongoing development of the
common language runtime and were used rather extensively inside the runtime development
team.

When Jonathan left the common language runtime team in the beginning of 1999, the
assembler and disassembler fell in the lap of Larry Sullivan, head of a development group with
the colorful name Common Runtime Odds and Ends Development Team (CROEDT). In April
of that year, I joined the team, and Larry passed the assembler and disassembler to me. When
an alpha version of the common language runtime was presented at a Technical Preview in
May 1999, the assembler and disassembler attracted significant attention, and I was told to
rework the tools and bring them up to production level. So I did, with great help from Larry,
Vance Morrison, and Jim Miller. The tools were still considered internal, so we (Larry, Vance,
Jim, and I) could afford to redesign the language—not to mention the implementation of the
tools—radically.

A major breakthrough occurred in the second half of 1999, when the IL assembler input
and IL disassembler output were synchronized enough to achieve limited round-tripping.
Round-tripping means you can take a managed (IL) executable compiled from a particular
language, disassemble it, add or change some ILAsm code, and reassemble it back into a mod-
ified executable. The round-tripping technique opened new avenues, and shortly thereafter it
began to be used in certain production processes both inside Microsoft and by its partners.

At about the same time, third-party .NET-oriented compilers that used ILAsm as a base
language started to appear. The best known is probably Fujitsu’s NetCOBOL, which made
quite a splash at the Professional Developers Conference in July 2000, where the first pre-beta
version of the common language runtime, along with the .NET Framework class library, com-
pilers, and tools, was released to the developer community.

Since the release of the beta 1 version in late 2000, the IL assembler and IL disassembler
have been fully functional in the sense that they reflect all the features of metadata and IL,
support complete round-tripping, and maintain synchronization of their changes with the
changes in the runtime itself.



INTRODUCTION

ILAsm Marching On

These days the IL assembler is used more and more in the compiler and tool implementation,
in education, and in academic research. The following compilers (for example), ranging from
purely academic projects to industrial-strength systems, produce ILAsm code as their output
and let the IL assembler take care of emitting the managed executables:

* Ada# (USAF Academy, Colorado)

* Alice.NET (Saarland University, Saarbriicken)

* Boo (codehaus.org)

e NetCOBOL (Fujitsu)

e COBOL2002 for .NET Framework (NEC/Hitachi)

* NetExpress COBOL (Microfocus)

e CommonLarceny.NET (Northeastern University, Boston)

e CULE.NET (CULEPlace.com)

e Component Pascal (Queensland University of Technology, Australia)
e Fortran (Lahey/Fujitsu)

¢ Hotdog Scheme (Northwestern University, Chicago)

e Lagoona.NET (University of California, Irvine)

e LCC (ANSI C) (Microsoft Research, Redmond)

e Mercury (University of Melbourne, Australia)

* Modula-2 (Queensland University of Technology, Australia)

* Moscow ML.NET (Royal Veterinary and Agricultural University, Denmark)
e Oberon.NET (Swiss Federal Institute of Technology, Ziirich)

e S# (Smallscript.com)

e SML.NET (Microsoft Research, Cambridge, United Kingdom)

The ability of the IL disassembler and IL assembler to work in tandem gave birth to a
slew of interesting tools and techniques based on “creative round-tripping” of managed
executables (disassembling—text manipulation—reassembling). For example, Preemptive
Software (a company known for its Java and .NET-oriented obfuscators and code optimizers)
built its DotFuscator system on this base. The DotFuscator is a commercial, industrial-
strength obfuscation and optimization system, well known on the market. I discuss some
other interesting examples of application of “creative round-tripping” in Chapter 19.

XXvii



Xxviii

INTRODUCTION

Practically all academic courses on .NET programming use ILAsm to some extent (how else
could the authors of these courses show the innards of .NET managed executables?). Some
courses are completely ILAsm based, such as the course developed by Dr. Regeti Govindarajulu
at International Institute of Informational Technologies (Hyderabad, India) and the course
developed by Drs. Andrey Makarov, Sergey Skorobogatov, and Andrey Chepovskiy at Lomonosov
University and Bauman Technical University (Moscow, Russia).

Who Should Read This Book

This book targets all the .NET-oriented developers who, working at a sufficiently advanced
level, care about what their programs compile into or who are willing to analyze the end
results of their programming. Here these readers will find the information necessary to inter-
pret disassembly texts and metadata structure summaries, allowing them to develop more
efficient programming techniques.

This analysis of disassemblies and metadata structuring is crucial in assessing the correct-
ness and efficiency of any .NET-oriented compiler, so this book should also prove especially
useful for compiler developers who are targeting .NET. A narrower but growing group of readers
who will find the book extremely helpful includes developers who use the IL assembly language
directly, such as compiler developers targeting ILAsm as an intermediate step, developers con-
templating multilanguage projects, and developers willing to exploit the capabilities of the
common language runtime that are inaccessible through the high-level languages.

Finally, this book can be valuable in all phases of software development, from conceptual
design to implementation and maintenance.

Organization of This Book

I begin in Part 1, “Quick Start,” with a quick overview of ILAsm and common language runtime
features, based on a simple sample program. This overview is in no way complete; rather, it is
intended to convey a general impression about the runtime and ILAsm as a language.

The following parts discuss features of the runtime and corresponding ILAsm constructs
in a detailed, bottom-up manner. Part 2, “Underlying Structures,” describes the structure of a
managed executable file and general metadata organization. Part 3, “Fundamental Compo-
nents,” is dedicated to the components that constitute a necessary base of any application:
assemblies, modules, classes, methods, fields, and related topics. Part 4, “Inside the Execution
Engine,” brings you, yes, inside the execution engine, describing the execution of IL instruc-
tions and managed exception handling. Part 5, “Special Components,” discusses metadata
representation and the usage of the additional components: events, properties, and custom
and security attributes. And Part 6, “Interoperation,” describes the interoperation between
managed and unmanaged code and discusses practical applications of the IL assembler and
IL disassembler to multilanguage projects.

The book’s five appendixes contain references concerning ILAsm grammar, metadata
organization, and IL instruction set and tool features, including the IL assembler, the IL
disassembler, and the offline metadata validation tool.



	Expert .NET 2.0 IL Assembler
	Table of Content
	PART 1 Quick Start
	Chapter 1 Simple Sample
	Chapter 2 Enhancing the Code
	Chapter 3 Making the Coding Easier

	PART 2 Underlying Structures
	Chapter 4 The Structure of a Managed Executable File
	Chapter 5 Metadata Tables Organization

	PART 3 Fundamental Components
	Chapter 6 Modules and Assemblies
	Chapter 7 Namespaces and Classes
	Chapter 8 Primitive Types and Signatures
	Chapter 9 Fields and Data Constants
	Chapter 10 Methods
	Chapter 11 Generic Types
	Chapter 12 Generic Methods

	PART 4 Inside the Execution Engine
	Chapter 13 IL Instructions
	Chapter 14 Managed Exception Handling

	PART 5 Special Components
	Chapter 15 Events and Properties
	Chapter 16 Custom Attributes
	Chapter 17 Security Attributes
	Chapter 18 Managed and Unmanaged Code Interoperation
	Chapter 19 Multilanguage Projects

	PART 6 Appendixes
	Appendix A ILAsm Grammar Reference
	Appendix B Metadata Tables Reference
	Appendix C IL Instruction Set Reference
	Appendix D IL Assembler and Disassembler Command-Line Options
	Appendix E Offline Verification Tool Reference

	Index




