
ix

preface xv
acknowledgments xvii
about this book xix

PART 1 THE C++/CLI LANGUAGE 1

1 Introduction to C++/CLI 3
1.1 The role of C++/CLI 4

What C++/CLI can do for you 6 ■ The rationale behind
the new syntax 8

1.2 Hello World in C++/CLI 13
The /clr compiler option 15 ■ Using VC++ 2005 to create
a /clr application 16

1.3 Declaring CLR types 18
Class modifiers 20 ■ CLI types and inheritance 22

1.4 Handles: the CLI equivalent to pointers 24
Syntax for using handles 24 ■ Tracking references 26

1.5 Instantiating CLI classes 28
The gcnew operator 28 ■ Constructors 31
Copy constructors 33 ■ Assignment operators 36

contents

x CONTENTS

1.6 Boxing and unboxing 38
Implicit boxing in the new syntax 38 ■ Boxing and
type-safety 40 ■ Implementation at the MSIL level 41
Assigning null to a boxed value type 43

1.7 Summary 45

2 Getting into the CLI: properties, delegates and arrays 46
2.1 Properties 47

Scalar Properties 48 ■ Indexed properties 55
2.2 Delegates and events 58

Delegates 59 ■ Events 64
2.3 CLI Arrays 68

Basic CLI array concepts 69 ■ Single-dimensional arrays 70
Multidimensional arrays 71 ■ Jagged arrays 72
Arrays as function arguments 74 ■ Returning arrays
from functions 75 ■ Parameter arrays 76
Using System::Array methods 77 ■ Array covariance 80
Arrays of non-CLI objects 81 ■ Directly accessing CLI arrays
using native pointers 83

2.4 Summary 84

3 More C++/CLI: stack semantics, function overriding,
and generic programming 86

3.1 Stack semantics and deterministic destruction 87
The new destructor and finalizer syntaxes 88
Stack semantics 96 ■ Guidelines for using destructors
and stack semantics 101

3.2 Function overriding 102
Explicit overriding 103 ■ Renamed overriding 104
Multiple overriding 105 ■ Sealed and abstract functions 106

3.3 Generics and managed templates 108
Why have parameterized types? 108 ■ Generics syntax for classes
and functions 110 ■ Constraint mechanism 113
Issues with the constraint mechanism and simple types 116
Comparison with templates 120 ■ Managed templates 124

3.4 Summary 129

CONTENTS xi

PART 2 MIXING MANAGED AND NATIVE CODE 131

4 Introduction to mixed-mode programming 133
4.1 Using interior and pinning pointers 135

Interior pointers 136 ■ Pinning pointers 141
4.2 Working with interop mechanisms 147

Accessing a managed library from native code 148
Accessing a native library from managed code 156

4.3 Using mixed types 162
Native types with managed members 162
Managed types with native members 166

4.4 Function pointers and delegates: bridging
the gap 173
Using GetFunctionPointerForDelegate 173
Using GetDelegateForFunctionPointer 175

4.5 Summary 177

5 Interoping with native libraries from
managed applications 179

5.1 Converting between managed and native types 181
Marshalling native strings 181 ■ Marshalling arrays 184
Simulating a native static array with managed code 185

5.2 Double thunking in mixed-mode function calls 186

5.3 Wrapping a native API and exposing
a CLI interface 190
Overview of the native API 191
Writing the CLI wrapper 193

5.4 Exposing an MFC extension DLL to .NET 206
Overview of the MFC extension DLL 207
Writing the managed regular MFC DLL wrapper 208

5.5 Accessing a COM object via a custom RCW 212
The COM object to interop with 212 ■ Writing the
custom RCW 215 ■ Using the custom RCW 218

xii CONTENTS

5.6 Writing a single mixed-mode DLL for both managed and
native clients 218
Wrapping the System::Object class 220
Writing derived class wrappers 223

5.7 Summary 227

PART 3 USING MANAGED FRAMEWORKS
FROM NATIVE APPLICATIONS 229

6 Interoping Windows Forms with MFC 231
6.1 A simple Windows Forms application 233

6.2 Hosting a Windows Forms control
in an MFC dialog 235

6.3 Hosting a Windows Forms control as an MFC view 239

6.4 Giving your MFC apps an Office 2003 style UI 249

6.5 Using a Windows Forms control as an MFC dialog 261

6.6 Using an MFC control in a Windows Forms form 267
The custom MFC control 268 ■ Hosting the MFC control
from WinForms 271 ■ Using the wrapped control from
a WinForms app 273

6.7 Summary 274

7 Using C++/CLI to target Windows Presentation
Foundation applications 276

7.1 What is WPF? 278
Overview of XAML 280 ■ Anatomy of a simple
WPF application 283

7.2 Using C++/CLI to write a WPF application 288
Creating a new C++/CLI Avalon project 289
Using procedural code 289 ■ Dynamically loading
XAML 294 ■ Deriving from a class in a C# DLL 297

7.3 A brief look at some WPF Graphics features 300
Using brushes and shapes 300 ■ Transformations 304

CONTENTS xiii

7.4 Hosting a WPF control in a native C++ application 310
Using a mixed-mode extension DLL 310
Using a mixed-mode application 319

7.5 Hosting a native control in a WPF application 326

7.6 Summary 331

8 Accessing the Windows Communication Foundation
with C++/CLI 332

8.1 Hello World with the Windows Communication
Foundation 334

8.2 Duplex communication in WCF 338
Creating the service 340 ■ Creating the client 342

8.3 Migrating a native DCOM application to WCF 344
The example DCOM server 346 ■ The native MFC client 348
Writing a WCF proxy service 351 ■ Modifying the MFC client
to use WCF 356 ■ Writing a pure WCF service 359
Comparison of the two migration methods 362

8.4 Hosting a WCF service in an IIS server 362

8.5 Summary 366

Appendix A concise introduction to the .NET Framework 368
 index 385

