Contents

Preface			xi
Contrib	uting Au	thors	xiii
Introduc			xix
Rolf Dre	echsler		
1	Forma	d Verification	xix
2	Challe	enges	xxi
3	Contri	ibutions to this Book	xxiii
1			
What S	at-Solver	rs can and cannot do	1
Eugene	Goldberg		
1	Introd	uction	1
2	Hard 1	Equivalence Checking CNF formulas	3
	2.1	Introduction	3
	2.2	Common Specification of Boolean Circuits	$\frac{3}{5}$
	2.3	Equivalence Checking as SAT	11
	2.4	Class $M(p)$ and general resolution	12
	2.5	Computation of existentially implied functions	13
	2.6	Equivalence Checking in General Resolution	14
	2.7	Equivalence Checking of Circuits with Unknown CS	20
	2.8	A Procedure of Equivalence Checking for Circuits with a Known CS	22
	2.9	Experimental Results	23
	$\frac{2.3}{2.10}$	Conclusions	$\frac{26}{26}$
3		Sets of Points	26
0	3.1	Introduction	$\frac{26}{26}$
	3.2	Stable Set of Points	$\frac{1}{28}$
	3.3	SSP as a reachable set of points	31
	3.4	Testing Satisfiability of CNF Formulas by SSP Construction	32
	3.5	Testing Satisfiability of Symmetric CNF Formulas by SSP Construction	35
	3.6	SSPs with Excluded Directions	39
	3.7	Conclusions	42

A D VA NCED	FODMAI	VEDIEIC	$\Lambda TION$
ADVANGED	FURWIAL	$VF_{i}KIFIG_{i}$	4 / /(//V

vi	$ADVANCED\ FORMAL\ VERIFICAT$	ION
2		
Advancen	nents in mixed BDD and SAT techniques	45
Gianpiero	Cabodi and Stefano Quer	
1	Introduction	45
2	Background	47
	2.1 SAT Solvers	47
	2.2 Binary Decision Diagrams	48
	2.2.1 Zero-Suppressed Binary Decision Diagrams	49
	2.2.2 Boolean Expression Diagrams2.3 Model Checking and Equivalence Checking	50 52
9	0 1	
3	Comparing SAT and BDD Approaches: Are they different? 3.1 Theoretical Considerations	54 54
	3.2 Experimental Benchmarking	55
	3.2.1 Bug Hunting in an Industrial Setting	56
	3.2.2 Modifying BDD-based Techniques to Perform BMC	56
	3.2.3 Conclusions	58
	3.3 Working on Affinities: Variable Order	58
	3.3.1 Affinities on circuit-width correlation	59
	3.3.2 Recursion tree and Variable Order 3.3.3 A Common Static Variable Order Heuristic	59 60
	3.3.4 Conclusions	60
4	Decision Diagrams as a Slave Engine in general SAT: Clause	00
4	Compression by Means of ZBDDs	61
	4.1 ZBDDs for Symbolic Davis-Putnam Resolution	61
	4.2 ZBDDs for Symbolic DLL	62
	4.3 ZBDDs for Breadth-First SAT	62
	4.4 Conclusions	62
5	Decision Diagram Preprocessing and Circuit-Based SAT	62
	5.1 BED Preprocessing	63
	5.2 Circuit-Based SAT 5.2.1 BDD Sweeping and SAT	64 64
	5.2.1 BDD Sweeping and SAT 5.2.2 SAT on BEDs	66
	5.3 Preprocessing by Approximate Reachability	67
6	Using SAT in Symbolic Reachability Analysis	68
Ü	6.0.1 BDDs at SAT leaves	69
	6.0.2 SAT-Based Symbolic Image and Pre-image	70
7	Conclusions, Remarks and Future Works	71
3		
Equivalen	ace Checking of Arithmetic Circuits	77
	Stoffel, Evgeny Karibaev, Irina Kufareva and Wolfgang Kunz	
	Introduction	78
2	Verification Using Functional Properties	81
3	Bit-Level Decision Diagrams	85
4	Word-Level Decision Diagrams	88
1	4.1 Pseudo-Boolean functions and decompositions	89
	4.2 *BMDs	92
	4.3 Equivalence Checking Using *BMDs	94
	4.4 Experiments with *BMD synthesis	97
5	Arithmetic Bit-Level Verification	105
-	5.1 Verification at the Arithmetic Bit Level	108
	5.2 Extracting the Half Adder Network	112

	••
Contents	VII
Concents	V 11

		5.3	Verification Framework	115
		5.4	Experimental Results	115
	6	Conclu	sion	118
	7	Future	Perspectives	119
			P	
4				
Ap	plication	on of Pi	roperty Checking and Underlying Techniques	125
			Peer Johannsen and Klaus Winkelmann	
100	1		Verification Environment: User's View	126
	1	1.1	Tool Environment	126
		1.1	The gateprop Property Checker	$\frac{120}{127}$
	2			129
	Z	2.1	Verification Environment: Underlying Techniques	$\frac{129}{129}$
		$\frac{2.1}{2.2}$	From Property to Satisfiability Propertying Structure during Problem Construction	131
		$\frac{2.2}{2.3}$	Preserving Structure during Problem Construction The Experimental Platform RtProp	$131 \\ 132$
	9			
	3	3.1	ting Symmetries	133 133
		$\frac{3.1}{3.2}$	Symmetry in Property Checking Problems Finding Symmetrical Value Vectors	136
		3.3	Practical Results	140
	4			
	4	4.1	ated Data Path Scaling to Speed Up Property Checking	$\frac{142}{143}$
		4.1	Bitvector Satisfiability Problems Formal Abstraction Techniques	$145 \\ 145$
		4.3	Speeding Up Hardware Verification by One-To-One Ab-	140
		4.0	straction	146
		4.4	Data Path Scaling of Circuit Designs	147
	5		ty Checking Use Cases	152
	0	5.1	Application Example: Reverse Engineering	155
		5.1.1	Functionality	155
		5.1.1	Task	155
		5.1.3	Examples for a property	156
		5.1.4	Results	157
		5.2	Application Example: Complete Block-Level ASIC Ver-	
			ification	158
		5.2.1	Verification Challenge and Approach	158
		5.2.2	Verifying the Control Path	159
		5.2.3	Data Path Results	160
		5.2.4	Overall Result	160
		5.3	Productivity Statistics	161
	6	Summa		162
		6.1	Achievements	162
		6.2	Challenges and Perspectives	163
5				
0			** 10	1.05
As	sertion	-Based	Verification	167
Cle	audione	$or Nun\epsilon$	es Coelho Jr. and Harry D. Foster	
	1	Introdu	uction	167
		1.1	Specifying properties	169
		1.2	Observability and controllability	171
		1.3	Formal property checking framework	172
	2	Asserti	on Specification	177
		2.1	Temporal logic	177
		2.2	Property Specification Language (PSL)	179

	2.2.1	Boolean layer	180
	2.2.2	Temporal layer	180
	2.2.3	Verification layer	182
3	Assert	ion libraries	183
4	Assert	ion simulation	184
5	Assert	ions and formal verification	186
	5.1	Handling complexity	186
	5.2	Formal property checking role	190
6		ions and synthesis	191
	6.1	On-line validation	191
	6.2	Synthesizable assertions	192
	$6.3 \\ 6.4$	Routing scheme for assertion libraries	194
	$\frac{0.4}{6.5}$	Assertion processors	$\frac{195}{197}$
7		Impact of Assertions in Real Circuits	
7	7.1	roperty specification example PCI overview	197 198
	7.1 7.2	PCI master reset requirement	198
	7.3	PCI burst order encoding requirement	199
	7.4	PCI basic read transaction	200
8	Summ		202
Ŭ	S GIIIII	wij	
6			
Forma	l Verificati	on for Nonlinear Analog Systems	205
Walter	Hartong,	Ralf Klausen and Lars Hedrich	
1	Introd	uction	206
2	Systen	n Description	206
	2.1	Analog Circuit Classes	208
	2.2	State Space Description	208
	2.2.1	Index	209
	2.2.2	Solving a DAE System	209
0	2.2.3	Linearized System Description	211
3		alence Checking	211
	$\frac{3.1}{3.1.1}$	Basic Concepts Nonlinear Manning of State Space Descriptions	$\frac{212}{212}$
	$\frac{3.1.1}{3.2}$	Nonlinear Mapping of State Space Descriptions Equivalence Checking Algorithm	$\frac{212}{213}$
	$\frac{3.2}{3.2.1}$	Sampling the State Space	$\frac{213}{213}$
	3.2.2	Consistent Sample Point	$\frac{215}{215}$
	3.3	Linear Transformation Theory	$\frac{1}{217}$
	3.3.1	System Transformation to a Kronecker Canonical	
		Form	217
	3.3.2	DAE System Transformation into the Virtual State Spa	
	3.3.3	Error Calculation	222
	$\frac{3.4}{2.4.1}$	Experimental Results	$\frac{222}{222}$
	$3.4.1 \\ 3.4.2$	Schmitt Trigger Example Bandpass Example	$\frac{222}{225}$
4		Checking	$\frac{225}{227}$
4	4.1	Model Checking Language	$\frac{227}{227}$
	$\frac{4.1}{4.2}$	Analog Model Checking Algorithm	$\frac{227}{230}$
	4.2.1	Transition Systems	$\frac{230}{230}$
	4.2.2	Discrete Time Steps	$\frac{230}{231}$
	4.2.3	State Space Subdivision	$\frac{232}{232}$
	4.2.4	Transition Relation	234

C	tents	X
~		

	4.2.5	Border Problems	236
	4.2.6	Input Value Model	$\frac{230}{237}$
	4.2.7	Optimizations	239
	4.3	Experimental Results	239
	4.3.1	Schmitt Trigger Example	239
	4.3.2	Tunnel Diode Oscillator Example	240
5	Summ	nary	242
6	Ackno	owledgement	242
Appendix: Mathematical Symbols			243
Index	ζ.		247