
P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

WY007-08 WY007-Sample WY007-Sample-v4.cls February 26, 2004 10:2

Executing VBA


In the old days of programming, procedural languages ruled, meaning that the overall program 
execution traveled from top to bottom. The main body of any of these programs had to cover 
every possibility: display a screen to the user, gather input, perform edit checking, display 
messages, update the database (or simple files in those days), and close when everything was done. 
The main program also had to cover every option or side request that the user might make. This 
made it difficult to understand the entire program, and it was tough to make changes because 
everything had to be retested when a modification was made. These lumbering beasts included 
COBOL, RPG, Pascal, and earlier forms of Basic. Millions of lines of code were written in these 
languages. 

Fortunately, those days are over for VBA programmers. VBA is an event-driven language. In every 
Access form and report there are a variety of events that are waiting for you to use. They are 
available when the form opens and closes, when records are updated, even when individual fields 
on the screen are changed. It’s all there at your fingertips. Each event can contain a procedure, which 
is finally where we get back to our procedural roots. Although each procedure runs from top to 
bottom, just like in the old days, it only runs when the event fires. Until then, it sleeps quietly, not 
complicating your logic or slowing down your program. 

Event-driven programming makes it much easier to handle complex programming tasks. By only 
worrying about events in your coding when they actually happen, each procedure is simpler and 
easier to debug. 

In this chapter, we’ll explore the nature of VBA events and show how the most common events are 
used, and we’ll look at how two different sections of your VBA code can run at the same time. We’ll 
also provide some guidelines about when and how to use Public and Private procedures, class 
modules, and data types. Finally, we’ll outline structural guidelines for procedures, show some 
common string and date handling techniques, and also how to prevent rounding errors in your 
calculations. 


