
Introduction

Visual C# .NET (C#) is relatively easy to learn for anyone familiar with another object-oriented
language. Even someone familiar with Visual Basic 6.0, who is looking for an object-oriented language,
will find C# easy to pick up. However, though C#, coupled with the .NET Framework, provides
a quick path for creating simple applications, you still must know a wealth of information and
understand how to use it correctly in order to produce sophisticated, robust, fault-tolerant C#
applications. I teach you what you need to know and explain how best to use your knowledge so
that you can quickly develop true C# expertise.

Idioms and design patterns are invaluable for developing and applying expertise, and I show
you how to use many of them to create applications that are efficient, robust, fault-tolerant, and
exception-safe. Although many are familiar to C++ and Java programmers, some are unique to .NET
and its Common Language Runtime (CLR). I show you how to apply these indispensable idioms and
design techniques to seamlessly integrate your C# applications with the .NET runtime, focusing on
the new capabilities of C# 2.0.

Design patterns document best practices in application design that many different program-
mers have discovered and rediscovered over time. In fact, the .NET Framework itself implements
many well known design patterns. Similarly, over the past three versions of the .NET Framework
and the past two versions of C#, many new idioms and best practices have come to light. You will
see these practices detailed throughout this book. Also, it is important to note that the invaluable
tool chest of techniques is evolving constantly.

.NET 2.0 provides a unique and stable cross-platform execution environment. C# is only one of
the languages that targets this powerful runtime. You will find that many of the techniques explored
in this book are also applicable to any language that targets the .NET runtime.

For those of you who have significant C++ experience and are familiar with such concepts as C++
canonical forms, exception safety, Resource Acquisition Is Initialization (RAII), and const correctness,
this book explains how to apply these concepts in C#. If you’re a Java or Visual Basic programmer who
has spent years developing your toolbox of techniques and you want to know how to apply them
effectively in C#, you’ll find out how to here.

As you’ll see, it doesn’t take years of trial-and-error experience to become a C# expert. You
simply need to learn the right things and the right ways to use them. That’s why I wrote this book
for you.

About This Book
I assume that you already have a working knowledge of some object-oriented programming lan-
guage, such as C++, Java, or Visual Basic (.NET or 2005). Since C# derives its syntax from both C++
and Java, I don’t spend much time covering C# syntax, except where it differs starkly from C++ or
Java. If you already know some C#, you may find yourself skimming or even skipping Chapters 1
through 3.

Chapter 1, “C# Preview,” gives a quick glimpse of what a simple C# application looks like, and it
describes some basic differences between the C# programming environment and the native
C++ environment.

xxiii

7176ch00FM.qxd 8/4/06 9:26 AM Page xxiii

Chapter 2, “C# and the CLR,” expands on Chapter 1 and quickly explores the managed environ-
ment within which C# applications run. I introduce you to assemblies, the basic building
blocks of applications, into which C# code files are compiled. Additionally, you’ll see how
metadata makes assemblies self-describing.

Chapter 3, “C# Syntax Overview,” surveys the C# language syntax. I introduce you to the two
fundamental kinds of types within the CLR: value types and reference types. I also describe
namespaces and how you can use them to logically partition types and functionality within
your applications.

Chapters 4 through 13 provide in-depth descriptions on how to employ useful idioms, design
patterns, and best practices in your C# programs and designs. I’ve tried hard to put these chap-
ters in logical order, but occasionally one chapter may reference a technique or topic covered
in a later chapter. It is nearly impossible to avoid this situation, but I tried to minimize it as
much as possible.

Chapter 4, “Classes, Structs, and Objects,” provides details about defining types in C#. You’ll
learn more about value types and reference types in the CLR. I also touch upon the native sup-
port for interfaces within the CLR and C#. You’ll see how type inheritance works in C#, as well
as how every object derives from the System.Object type. This chapter also contains a wealth of
information regarding the managed environment and what you must know in order to define
types that are useful in it. I introduce many of these topics in this chapter and discuss them in
much more detail in later chapters.

Chapter 5, “Interfaces and Contracts,” details interfaces and the role they play in the C# lan-
guage. Interfaces provide a functionality contract that types may choose to implement. You’ll
learn the various ways that a type may implement an interface, as well as how the runtime
chooses which methods to call when an interface method is called.

Chapter 6, “Overloading Operators,” details how you may provide custom functionality for the
built-in operators of the C# language when applied to your own defined types. You’ll see how to
overload operators responsibly, since not all managed languages that compile code for the CLR
are able to use overloaded operators.

Chapter 7, “Exception Handling and Exception Safety,” shows you the exception-handling
capabilities of the C# language and the CLR. Although the syntax is similar to that of C++,
creating exception-safe and exception-neutral code is tricky—even more tricky than creating
exception-safe code in native C++. You’ll see that creating fault-tolerant, exception-safe code
doesn’t require the use of try, catch, or finally constructs at all. I also describe some of the
new capabilities within the .NET 2.0 runtime that allow you to create more fault-tolerant code
than was possible in .NET 1.1.

Chapter 8, “Working with Strings,” describes how strings are a first-class type in the CLR and
how to use them effectively in C#. A large portion of the chapter covers the string-formatting
capabilities of various types in the .NET Framework and how to make your defined types
behave similarly by implementing IFormattable. Additionally, I introduce you to the globaliza-
tion capabilities of the framework and how to create custom CultureInfo for cultures and
regions that the .NET Framework doesn’t already know about.

Chapter 9, “Arrays, Collection Types, and Iterators,” covers the various array and collection types
available in C#. You can create two types of multidimensional arrays, as well as your own collec-
tion types while utilizing collection-utility classes. You’ll see how to define forward, reverse, and
bidirectional iterators using the new iterator syntax introduced in C# 2.0, so that your collection
types will work well with foreach statements.

■INTRODUCTIONxxiv

7176ch00FM.qxd 8/4/06 9:26 AM Page xxiv

Chapter 10, “Delegates, Anonymous Functions, and Events,” shows you the mechanisms
used within C# to provide callbacks. Historically, all viable frameworks have always provided
a mechanism to implement callbacks. C# goes one step further and encapsulates callbacks into
callable objects called delegates. Additionally, C# 2.0 allows you to create delegates with an
abbreviated syntax called anonymous functions. Anonymous functions are similar to lambda
functions in functional programming. Also, you’ll see how the framework builds upon delegates
to provide a publish/subscribe event notification mechanism, allowing your design to decou-
ple the source of the event from the consumer of the event.

Chapter 11, “Generics,” introduces you to probably the most exciting feature added to C# 2.0
and the CLR. Those familiar with C++ templates will find generics somewhat familiar, though
many fundamental differences exist. Using generics, you can provide a shell of functionality
within which to define more specific types at run time. Generics are most useful with collection
types and provide great efficiency compared to the collections of previous .NET versions.

Chapter 12, “Threading in C#,” covers the tasks required in creating multithreaded applications
in the C# managed virtual execution environment. If you’re familiar with threading in the native
Win32 environment, you’ll notice the significant differences. Moreover, the managed environ-
ment provides much more infrastructure for making the job easier. You’ll see how delegates,
through use of the I Owe You (IOU) pattern, provide an excellent gateway into the process thread
pool. Arguably, synchronization is the most important concept when getting multiple threads
to run concurrently. This chapter covers the various synchronization facilities available to your
applications.

Chapter 13, “In Search of C# Canonical Forms,” is a dissertation on the best design practices
for defining new types and how to make them so you can use them naturally and so consumers
won’t abuse them inadvertently. I touch upon some of these topics in other chapters, but I dis-
cuss them in detail in this chapter. This chapter concludes with a checklist of items to consider
when defining new types using C#.

■INTRODUCTION xxv

7176ch00FM.qxd 8/4/06 9:26 AM Page xxv

	Accelerated C# 2005
	Table of Content
	Chapter 1 C# Preview
	Chapter 2 C# and the CLR
	Chapter 3 C# Syntax Overview.
	Chapter 4 Classes, Structs, and Objects
	Chapter 5 Interfaces and Contracts
	Chapter 6 Overloading Operators
	Chapter 7 Exception Handling and Exception Safety.
	Chapter 8 Working with Strings
	Chapter 9 Arrays, Collection Types, and Iterators
	Chapter 10 Delegates, Anonymous Functions, and Events.
	Chapter 11 Generics
	Chapter 12 Threading in C#.
	Chapter 13 In Search of C# Canonical Forms.
	Appendix References
	Index

