
 9

Preface 

Testing software is a very important and challenging activity. This is a book for 
people who test software during its development. Our focus is on object-oriented 
and component-based software, but you can apply many of the techniques 
discussed in this book regardless of the development paradigm. We assume our 
reader is familiar with testing procedural software— that is, software written in the 
procedural paradigm using languages such as C, Ada, Fortran, or COBOL. We also 
assume our reader is familiar and somewhat experienced in developing software 
using object-oriented and component-based technologies. Our focus is on 
describing what to test in object-oriented development efforts as well as on 
describing techniques for how to test object-oriented software, and how testing 
software built with these newer technologies differs from testing procedural 
software. 

What is software testing? To us, testing is the evaluation of the work products 
created during a software development effort. This is more general than just 
checking part or all of a software system to see if it meets its specifications. 
Testing software is a difficult process, in general, and sufficient resources are 
seldom available for testing. From our standpoint, testing is done throughout a 
development effort and is not just an activity tacked on at the end of a development 
phase to see how well the developers did. We see testing as part of the process that 
puts quality into a software system. As a result, we address the testing of all 
development products (models) even before any code is written. 

We do not necessarily believe that you will apply everything we describe in this 
book. There are seldom enough resources available to a development effort to do 
all the levels and kinds of testing we would like. We hope you will find a number 
of approaches and techniques that will prove useful to and affordable for your 
project. 

In this book we describe a set of testing techniques. All of the techniques we 
describe have been applied in practice. Many of these techniques have been used in 
a wide variety of industries and on projects of vastly different sizes. In Chapter 3, 
we will consider the impact of some of these variables on the types of testing that 
are routinely performed. 

To describe these techniques, we rely in many cases on one or more examples to 
illustrate their application. We hope from these examples and from our 
explanations that you can apply the same techniques to your project software in a 



 10

straightforward manner. The complete code for these examples, test code, and 
other resources can be obtained from 
http://cseng.aw.com/book/0.3828.0201325640.00.html. 

In order to make this book as useful as possible, we will provide two major 
organizational threads. The physical layout of the book will follow the usual 
sequence of events as they happen on a project. Model testing will be addressed 
earlier than component or code testing, for example. We will also include a set of 
questions that a tester might ask when he or she is faced with specific testing tasks 
on a project. This testing FAQ will be tied into the main body of the text with 
citations. 

We have included alternative techniques and ways of adapting techniques for 
varying the amount of testing. Testing life-critical or mission-critical software 
requires more effort than testing an arcade game. The summary sections of each 
chapter should make these choices clear. 

This book is the result of many years of research, teaching, and consulting both in 
the university and in companies. We would like to thank the sponsors of our 
research, including COMSOFT, IBM, and AT&T for their support of our academic 
research. Thanks to the students who assisted in the research and those who sat 
through many hours of class and provided valuable feedback on early versions of 
the text. The consultants working for Korson-McGregor, formerly Software 
Architects, made many suggestions and worked with early versions of the 
techniques while still satisfying client needs. The employees of numerous 
consulting clients helped us perfect the techniques by providing real problems to 
be solved and valuable feedback. A special thanks to Melissa L. Russ (formerly 
Major) who helped teach several tutorials and made her usual insightful comments 
to improve the material. 

Most of all, we wish to thank our families for enduring our mental and physical 
absences and for the necessary time to produce this work: Gayle and Mary Frances 
McGregor; Susan, Aaron, Perry, and Nolan Sykes. 

JDM 

DAS 

 

 


	Cover
	Table of Contents
	Copyright
	Preface
	Chapter 1. Introduction
	Who Should Read This Book?
	What Software Testing Is— and Isn't
	What Is Different about Testing Object-Oriented Software?
	Overview of Our Testing Approach
	Organization of This Book
	Conventions Used in This Book
	A Continuing Example— Brickles
	Exercises

	Chapter 2. The Testing Perspective
	Object-Oriented Concepts
	Object
	Message
	Interface
	Class
	Class Specification
	Class Implementation
	Inheritance
	Polymorphism
	Inclusion Polymorphism
	Parametric Polymorphism


	Development Products
	Analysis Models
	Use Case Diagram
	Class Diagrams
	Class Specifications
	Sequence Diagrams
	Activity Diagrams

	Design Models
	Exercises

	Chapter 3. Planning for Testing
	A Development Process Overview
	A Testing Process Overview
	Risk Analysis— A Tool for Testing
	A Testing Process
	Estimation
	Levels of Coverage
	Domain Type
	Equipment Required
	Organization Model
	Testing Effort Estimate
	A Process for Testing Brickles
	Document Templates
	Project Test Plan
	Component Test Plan
	Integration Test Plan
	System Test Plan

	Iteration in Planning
	Planning Effort
	Exercises

	Chapter 4. Testing Analysis and Design Models
	An Overview
	Place in the Development Process
	The Basics of Guided Inspection
	Organization of the Guided Inspection Activity
	Preparing for the Inspection
	Testing Specific Types of Models
	Testing Models for Additional Qualities
	Summary
	Exercises

	Chapter 5. Class Testing Basics
	Class Testing
	Constructing Test Cases
	Constructing a Test Driver
	Summary
	Exercises

	Chapter 6. Testing Interactions
	Object Interactions
	Testing Object Interactions
	Sampling Test Cases
	Testing Off-the-Shelf Components
	Protocol Testing
	Test Patterns
	Testing Exceptions
	Summary
	Exercises

	Chapter 7. Testing Class Hierarchies
	Inheritance in Object-Oriented Development
	Subclass Test Requirements
	Organizing Testing Software
	Testing Abstract Classes
	Summary
	Exercises

	Chapter 8. Testing Distributed Objects
	Basic Concepts
	Computational Models
	Basic Differences
	Threads
	Path Testing in Distributed Systems
	Life-Cycle Testing
	Models of Distribution
	A Generic Distributed-Component Model
	Specifying Distributed Objects
	Temporal Logic
	A Test Environment
	Test Cases
	The Ultimate Distributed System— The Internet
	Summary
	Exercises

	Chapter 9. Testing Systems
	Defining the System Test Plan
	Complementary Strategies for Selecting Test Cases
	Use Cases as Sources of Test Cases
	Testing Incremental Projects
	Testing Multiple Representations
	What Needs to Be Tested?
	Types of Testing
	Testing Different Types of Systems
	Measuring Test Coverage
	Summary
	Exercises
	Chapter 10. Components, Frameworks, and Product Lines
	Component Models
	Frameworks
	Product Lines
	Summary
	Exercises

	Chapter 11. Conclusion
	Suggestions
	Brickles
	Finally

	Bibliography



