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Preface 

Testing software is a very important and challenging activity. This is a book for 
people who test software during its development. Our focus is on object-oriented 
and component-based software, but you can apply many of the techniques 
discussed in this book regardless of the development paradigm. We assume our 
reader is familiar with testing procedural software— that is, software written in the 
procedural paradigm using languages such as C, Ada, Fortran, or COBOL. We also 
assume our reader is familiar and somewhat experienced in developing software 
using object-oriented and component-based technologies. Our focus is on 
describing what to test in object-oriented development efforts as well as on 
describing techniques for how to test object-oriented software, and how testing 
software built with these newer technologies differs from testing procedural 
software. 

What is software testing? To us, testing is the evaluation of the work products 
created during a software development effort. This is more general than just 
checking part or all of a software system to see if it meets its specifications. 
Testing software is a difficult process, in general, and sufficient resources are 
seldom available for testing. From our standpoint, testing is done throughout a 
development effort and is not just an activity tacked on at the end of a development 
phase to see how well the developers did. We see testing as part of the process that 
puts quality into a software system. As a result, we address the testing of all 
development products (models) even before any code is written. 

We do not necessarily believe that you will apply everything we describe in this 
book. There are seldom enough resources available to a development effort to do 
all the levels and kinds of testing we would like. We hope you will find a number 
of approaches and techniques that will prove useful to and affordable for your 
project. 

In this book we describe a set of testing techniques. All of the techniques we 
describe have been applied in practice. Many of these techniques have been used in 
a wide variety of industries and on projects of vastly different sizes. In Chapter 3, 
we will consider the impact of some of these variables on the types of testing that 
are routinely performed. 

To describe these techniques, we rely in many cases on one or more examples to 
illustrate their application. We hope from these examples and from our 
explanations that you can apply the same techniques to your project software in a 
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straightforward manner. The complete code for these examples, test code, and 
other resources can be obtained from 
http://cseng.aw.com/book/0.3828.0201325640.00.html. 

In order to make this book as useful as possible, we will provide two major 
organizational threads. The physical layout of the book will follow the usual 
sequence of events as they happen on a project. Model testing will be addressed 
earlier than component or code testing, for example. We will also include a set of 
questions that a tester might ask when he or she is faced with specific testing tasks 
on a project. This testing FAQ will be tied into the main body of the text with 
citations. 

We have included alternative techniques and ways of adapting techniques for 
varying the amount of testing. Testing life-critical or mission-critical software 
requires more effort than testing an arcade game. The summary sections of each 
chapter should make these choices clear. 

This book is the result of many years of research, teaching, and consulting both in 
the university and in companies. We would like to thank the sponsors of our 
research, including COMSOFT, IBM, and AT&T for their support of our academic 
research. Thanks to the students who assisted in the research and those who sat 
through many hours of class and provided valuable feedback on early versions of 
the text. The consultants working for Korson-McGregor, formerly Software 
Architects, made many suggestions and worked with early versions of the 
techniques while still satisfying client needs. The employees of numerous 
consulting clients helped us perfect the techniques by providing real problems to 
be solved and valuable feedback. A special thanks to Melissa L. Russ (formerly 
Major) who helped teach several tutorials and made her usual insightful comments 
to improve the material. 

Most of all, we wish to thank our families for enduring our mental and physical 
absences and for the necessary time to produce this work: Gayle and Mary Frances 
McGregor; Susan, Aaron, Perry, and Nolan Sykes. 

JDM 

DAS 
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