CONTENTS

1 INTRODUCTION TO MECHANICS

OF MATERIALS

OF M	ATERIALS	1		Relationship Between E and G , 69
1.1 1.2 1.3 1.4 1.5	What Is Mechanics of Materials? 1 (Includes Color-Photo Insert) The Fundamental Equations of Deformable-Body Mechanics, 4 Problem-Solving Procedures, 6 Review of Static Equilibrium; Equilibrium of Deformable Bodies, 8 Problems, 17		2.12 *2.13 *2.14 2.15	General Definitions of Stress and Strain, 72 Cartesian Components of Stress; Generalized Hooke's Law for Isotropic Materials, 82 Mechanical Properties of Composite Materials, 87 Problems, 89 Chapter 2 Review, 113
	Chapter 1 Review, 21		2 47	IAL DECORMATION 440
			3 AXI	AL DEFORMATION 118
2 STRESS AND STRAIN; INTRODUCTION TO DESIGN 22		22	3.1 3.2	Introduction, 118 Basic Theory of Axial Deformation, 118
2.1	Introduction, 22		3.3	Examples of Nonuniform Axial Deformation, 126
2.2	Normal Stress, 23		3.4	Statically Determinate Structures, 136
2.3	Extensional Strain; Thermal Strain, 31		3.5	Statically Indeterminate Structures, 143
2.4	Stress-Strain Diagrams; Mechanical Properties of Materials, 37		3.6 3.7	Thermal Effects on Axial Deformation, 152 Geometric "Misfits," 163
2.5	Elasticity and Plasticity; Temperature Effects, 45		3.8	Displacement-Method Solution of Axial-Deformation Problems, 168
	Linear Elasticity; Hooke's Law and Poisson's Ratio, 48		*3.9	Force-Method Solution of Axial- Deformation Problems, 180
2.7	Shear Stress and Shear Strain; Shear Modulus, 51		*3.10	Introduction to the Analysis of Planar Trusses, 189
2.8	Introduction to Design—Axial Loads		*3.11	Inelastic Axial Deformation, 197
2.0	and Direct Shear, 57		3.12	Problems, 209
2.9	Stresses on an Inclined Plane in an Axially Loaded Member, 65			Chapter 3 Review, 234

1

2.10 Saint-Venant's Principle, 67

2.11 Hooke's Law for Plane Stress; The

			6.4	Design of Beams for Strength, 369	
4 то	RSION	237	6.5	Flexural Stress in Nonhomogeneous Beams, 375	
4.1	Introduction, 237		*6.6	Unsymmetric Bending, 383	
4.2	Torsional Deformation of Circular		*6.7	Inelastic Bending of Beams, 392	
	Bars, 238		6.8	Shear Stress and Shear Flow in	
4.3	Torsion of Linearly Elastic Circular Bars, 241		0.0	Beams, 402	
4.4	Stress Distribution in Circular Torsion Bars; Torsion Testing, 249		6.9	Limitations on the Shear-Stress Formula, 408	
4.5	Statically Determinate Assemblages of		6.10	Shear Stress in Thin-Wall Beams, 411	
	Uniform Torsion Members, 253		6.11	Shear in Built-Up Beams, 421	
4.6	Statically Indeterminate Assemblages of	•	*6.12	Shear Center, 425	
	Uniform Torsion Members, 258		6.13	Problems, 432	
4.7	Displacement-Method Solution of Torsion Problems, 266			Chapter 6 Review, 460	
4.8	Power-Transmission Shafts, 272				
*4.9	Thin-Wall Torsion Members, 275		7 DE	FLECTION OF BEAMS	463
*4.10	Torsion of Noncircular Prismatic Bars, 280		7.1	Introduction, 463	
*4.11	Inelastic Torsion of Circular		7.2	Differential Equations of the	
4.11	Rods, 284		7.2	Deflection Curve, 464	
4.12	Problems, 290		7.3	Slope and Deflection by	
11.12	Chapter 4 Review, 307			Integration—Statically Determinate Beams, 470	
5 EQ	UILIBRIUM OF BEAMS	309	7.4	Slope and Deflection by Integration—Statically Indeterminate Beams, 483	
5.1	Introduction, 309		*7.5	Use of Discontinuity Functions to	
5.2	Equilibrium of Beams Using Finite			Determine Beam Deflections, 488	
0.2	Free-Body Diagrams, 314		7.6	Slope and Deflection of Beams: Superposition Method, 495	
5.3	Equilibrium Relationships Among		*7.7	Slope and Deflection of Beams:	
	Loads, Shear Force, and Bending		7.7	Displacement Method, 513	
- 4	Moment, 318		7.8	Problems, 520	
5.4	Shear-Force and Bending-Moment Diagrams: Equilibrium Method 321		7.00	Chapter 7 Review, 539	
5.5	Shear-Force and Bending-Moment Diagrams: Graphical Method 326				
*5.6	Discontinuity Functions to Represent		8 TR	ANSFORMATION OF STRESS	
	Loads, Shear, and Moment, 333			STRAIN; MOHR'S CIRCLE	541
5.7	Problems, 340			,	
	Chapter 5 Review, 348		8.1	Introduction, 541	
			8.2	Plane Stress, 542	
			8.3	Stress Transformation for Plane	
6 STI	RESSES IN BEAMS	351	<i>~ :</i>	Stress, 544	
6.1	Introduction, 351		8.4	Principal Stresses and Maximum Shear Stress, 551	
6.2	Strain-Displacement Analysis, 354		8.5	Mohr's Circle for Plane Stress, 557	
6.3	Flexural Stress in Linearly Elastic		8.6	Triaxial Stress; Absolute Maximum	
	Beams, 360		5.0	Shear Stress, 564	

8.7	Plane Strain, 571		11.4	Work-Energy Principle for	
8.8	Transformation of Strains in a		44.5	Calculating Deflections, 697	
8.9	Plane, 572 Mohr's Circle for Strain, 576		11.5	Castigliano's Second Theorem; The Unit-Load Method, 702	
8.10	Measurement of Strain; Strain		*11.6	Virtual Work, 713	
0.10	Rosettes, 582		*11.7	Strain-Energy Methods, 717	
*8.11	Analysis of Three-Dimensional		*11.8	Complementary-Energy Methods, 722	
	Strain, 587		*11.9	Dynamic Loading; Impact, 732	
8.12	Problems, 588		11.10	Problems, 737	
	Chapter 8 Review, 601			Chapter 11 Review, 751	
9 PR	ESSURE VESSELS; STRESSES DUE		12 s	PECIAL TOPICS RELATED	
го с	OMBINED LOADING	604	TO D	ESIGN	753
9.1	Introduction, 604		12.1	Introduction, 753	
9.2	Thin-Wall Pressure Vessels, 605		12.2	Stress Concentrations , 753	
9.3	Stress Distribution in Beams, 611		*12.3	Failure Theories, 760	
9.4	Stresses Due to Combined Loads, 616		*12.4	Fatigue and Fracture, 768	
9.5	Problems, 625		12.5	Problems, 772	
	Chapter 9 Review, 633			Chapter 12 Review, 777	
10 в	UCKLING OF COLUMNS	635		JMERICAL ACCURACY;	
10.1	Introduction, 635		APPR	OXIMATIONS	A-1
10.2	The Ideal Pin-Ended Column; Euler		A.1	Numerical Accuracy; Significant	
	Buckling Load, 638			Digits, A-1	
10.3	The Effect of End Conditions on Column Buckling, 644		A.2	Approximations, A-2	
*10.4	Eccentric Loading; The Secant Formula, 651		B SY	STEMS OF UNITS	B-1
*10.5	Imperfections in Columns, 657		D 1	Later backers D 1	
*10.6	Inelastic Buckling of Ideal			Introduction, B-1	
40 -	Columns, 658			SI Units, B-1 U.S. Customary Units; Conversion of	
10.7	Design of Centrally Loaded Columns, 662			Units, B-3	
10.8	Problems, 668			,	
	,				
	Chapter 10 Review, 681			EOMETRIC PROPERTIES OF E AREAS	C-1
11 EI	NERGY METHODS	683	C.1	First Moments of Area; Centroid, C-1	
			C.2	Moments of Inertia of an Area, C-4	
11.1	<i>'</i>			Product of Inertia of an Area, C-8	
11.2	Work and Strain Energy, 684			Area Moments of Inertia About	
11.3	Elastic Strain Energy for Various Types of Loading, 691			Inclined Axes; Principal Moments of Inertia, C-10	

D SECTION PROPERTIES OF SELECTED STRUCTURAL SHAPES D-1		E.2 Deflections and Slopes of Simply Supported Uniform Beams, E-3E.3 Fixed-End Actions for Uniform Beams, E-4		
D.1 D.2	Properties of Steel Wide-Flange (W) Shapes (U.S. Customary Units), D-2 Properties of Steel Wide-Flange (W)	F MECHANICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS	F-1	
D.3 D.4	Shapes (SI Units), D-3 Properties of American Standard (S) Beams (U.S. Customary Units), D-4 Properties of American Standard (C) Channels (U.S. Customary Units), D-5	 F.1 Specific Weight and Mass Density, F-2 F.2 Modulus of Elasticity, Shear Modulus of Elasticity, and Poisson's 	-	
D.5 D.6 D.7	Properties of Steel Angle Sections— Equal Legs (U.S. Customary Units), D-6 Properties of Steel Angle Sections— Unequal Legs (U.S. Customary Units), D-7 Properties of Standard-Weight Steel	Ratio, F-3 F.3 Yield Strength, Ultimate Strength, Percent Elongation in 2 Inches, and Coefficient of Thermal Expansion, F-4		
D.8	Pipe (U.S. Customary Units), D-8 Properties of Structural Lumber (U.S. Customary Units), D-9	G COMPUTATIONAL MECHANICS	G-	
D.9	Properties of Aluminum Association Standard I-Beams (U.S. Customary Units), D-10	G.1 MDSolids, G-1		
D.10		ANSWERS TO SELECTED ODD- NUMBERED PROBLEMS	ANS-	
	EFLECTIONS AND SLOPES OF MS; FIXED-END ACTIONS E-1	REFERENCES	R-	
E.1	Deflections and Slopes of Cantilever Uniform Beams, E-1	INDEX	I-	