Table of Contents

List of I	Exhibits	viii
Photo (Credits	xiv
Chapt	er 1 - Introduction	1
1.1	Scope of Guide	2
1.2	Organization of Guide	3
1.3	Defining Physical Features	5
1.4	Key Dimensions	5
1.5	Distinguishing Roundabouts from Other Circular Intersections	8
1.6	Roundabout Categories	12
1.7	References	20
Chapt	er 2 - Policy Considerations	21
2.1	Characteristics	23
2.2	Multimodal Considerations	32
2.3	Costs Associated with Roundabouts	36
2.4	Legal Considerations	37
2.5	Public Involvement	40
2.6	Education	43
2.7	References	48
Chapt	er 3 - Planning	49
3.1	Planning Steps	51
3.2	Considerations of Context	53
3.3	Number of Entry Lanes	55
3.4	Selection Categories	58
3.5	Comparing Operational Performance of Alternative Intersection Types	64
3.6	Space Requirements	69

3.7	Economic Evaluation	70
3.8	References	76

Chapter 4 - Operation

79

4.1	Traffic Operation at Roundabouts	82
4.2	Data Requirements	83
4.3	Capacity	86
4.4	Performance Analysis	91
4.5	Computer Software for Roundabouts	96
4.6	References	98

Chapter 5 - Safety

101

5.1	Introduction	103
5.2	Conflicts	104
5.3	Crash Statistics	111
5.4	Crash Prediction Models	122
5.5	References	125

Chapter 6 - Geometric Design 127

6.1	Introduction	130
6.2	General Design Principles	132
6.3	Geometric Elements	145
6.4	Double-Lane Roundabouts	172
6.5	Rural Roundabouts	176
6.6	Mini-Roundabouts	179
6.7	References	181

Chapter 7 -	Traffic Design and I	Landscaping	183
•	manne Deerginana .	anaovaping	

7.1	Signing	185
7.2	Pavement Markings	197
7.3	Illumination	202
7.4	Work Zone Traffic Control	205
7.5	Landscaping	207
7.6	References	209

Chapter 8 - System Considerations

8.1	Traffic Signals at Roundabouts	213
8.2	At-Grade Rail Crossings	215
8.3	Closely Spaced Roundabouts	217
8.4	Roundabout Interchanges	219
8.5	Roundabouts in an Arterial Network	223
8.6	Microscopic Simulation	227
8.7	References	229

211

Glossary 231

Bibliography	240
Appendix A: Operations Analysis Formulas	251
Appendix B: Example Roundabout Designs	257
Appendix C: MUTCD Recommendations	265

List of Exhibits

Chapter 1 - Introduction

Exhibit 1-1.	Drawing of key roundabout features.	6
Exhibit 1-2	Description of key roundabout features.	6
Exhibit 1-3.	Drawing of key roundabout dimensions.	7
Exhibit 1-4.	Description of key roundabout dimensions.	7
Exhibit 1-5.	Comparison of roundabouts with traffic circles.	8
Exhibit 1-6.	Common design elements at roundabouts.	10
Exhibit 1-7.	Basic design characteristics for each of the six	
	roundabout categories.	13
Exhibit 1-8.	Typical mini-roundabout.	14
Exhibit 1-9.	Typical urban compact.	15
Exhibit 1-10.	Typical urban single-lane roundabout.	16
Exhibit 1-11.	Typical urban double-lane roundabout.	17
Exhibit 1-12	Typical rural single-lane roundabout.	18
Exhibit 1-13	Typical rural double-lane roundabout	19

Chapter 2 - Policy Considerations

Exhibit 2-1.	Average annual crash frequencies at 11 U.S.	
	intersections converted to roundabouts.	23
Exhibit 2-2.	Pedestrian's chances of death if hit by a motor vehicle.	25
Exhibit 2-3.	Comparisons of vehicle-vehicle conflict points for	
	intersections with four single-lane approaches.	26
Exhibit 2-4.	Fastest vehicle path through a double-lane roundabout.	27
Exhibit 2-5.	Examples of aesthetic treatments.	31
Exhibit 2-6.	Examples of informational brochures.	42
Exhibit 2-7.	Driving straight through a roundabout.	45
Exhibit 2-8.	Turning left at a roundabout.	46

Chapter 3 - Planning

Exhibit 3-1.	Maximum daily service volumes for a	
	four-leg roundabout.	57
Exhibit 3-2.	Planning-level maximum daily service volumes for	
	mini-roundabouts.	57

Exhibit 3-3.	Example of community enhancement roundabout.	59
Exhibit 3-4.	Example of traffic calming roundabouts.	60
Exhibit 3-5.	Comparison of predicted rural roundabout injury crashes	
	with rural TWSC intersections.	61
Exhibit 3-6.	Comparisons of predicted injury crashes for single-lane	
	and double-lane roundabouts with rural or urban signalized	
	intersections.	61
Exhibit 3-7.	Average delay per vehicle at the MUTCD peak hour	
	signal warrant threshold.	63
Exhibit 3-8.	Comparison of TWSC and single-lane roundabout capacity.	65
Exhibit 3-9.	Sample hourly distribution of traffic.	66
Exhibit 3-10.	Annual savings in delay of single-lane roundabout versus	
	AWSC, 50 percent of volume on the major street.	67
Exhibit 3-11.	Annual savings in delay of single-lane roundabout versus	
	AWSC, 65 percent of volume on the major street.	67
Exhibit 3-12.	Delay savings for roundabouts vs. signal, 50 percent	
	volume on major street.	69
Exhibit 3-13.	Delay savings for roundabouts vs. signal, 65 percent	
	volume on major street.	69
Exhibit 3-14.	Assumptions for spatial comparison of roundabouts	
	and comparable conventional intersections.	70
Exhibit 3-15.	Area comparison: Urban compact roundabout vs.	
	comparable signalized intersection.	71
Exhibit 3-16.	Area comparison: Urban single-lane roundabout vs.	
	comparable signalized intersection.	71
Exhibit 3-17.	Area comparison: Urban double-lane roundabout vs.	
	comparable signalized intersection.	72
Exhibit 3-18.	Area comparison: Urban flared roundabouts vs.	
	comparable signalized intersection.	72
Exhibit 3-19.	Estimated costs for crashes of varying levels	
	of severity.	74

Chapter 4 - Operation

Exhibit 4-1.	Conversion factors for passenger car equivalents (pce).	84
Exhibit 4-2.	Traffic flow parameters.	85
Exhibit 4-3.	Approach capacity of a single-lane roundabout.	87
Exhibit 4-4.	Approach capacity of a double-lane roundabout.	88

Exhibit 4-5.	Capacity reduction factors for short lanes.	89
Exhibit 4-6.	Capacity comparison of single-lane and	
	double-lane roundabouts.	89
Exhibit 4-7.	Capacity reduction factor <i>M</i> for a single-lane	
	roundabout assuming pedestrian priority.	90
Exhibit 4-8.	Capacity reduction factor M for a double-lane	
	roundabout assuming pedestrian priority.	91
Exhibit 4-9.	Control delay as a function of capacity and	
	circulating flow.	93
Exhibit 4-10.	95th-percentile queue length estimation.	95
Exhibit 4-11.	Summary of roundabout software products for	
	operational analysis.	97

Chapter 5 - Safety

Exhibit 5-1.	Vehicle conflict points for "T" Intersections with	
	single-lane approaches.	105
Exhibit 5-2.	Vehicle conflict point comparison for intersections	
	with single-lane approaches.	106
Exhibit 5-3	Improper lane-use conflicts in double-lane roundabouts.	107
Exhibit 5-4.	Improper turn conflicts in double-lane roundabouts.	108
Exhibit 5-5.	Pedestrian-vehicle conflicts at signalized intersections.	109
Exhibit 5-6.	Pedestrian-vehicle conflicts at single-lane roundabouts.	109
Exhibit 5-7.	Bicycle conflicts at conventional intersections.	110
Exhibit 5-8.	Bicycle conflicts at roundabouts.	111
Exhibit 5-9.	Average annual crash frequencies at 11 U.S.	
	intersections converted to roundabouts.	112
Exhibit 5-10.	Mean crash reductions in various countries.	112
Exhibit 5-11.	Reported proportions of major crash types at	
	roundabouts.	113
Exhibit 5-12.	Comparison of collision types at roundabouts.	114
Exhibit 5-13.	Graphical depiction of collision types at roundabouts.	115
Exhibit 5-14.	Accident percentage per type of user urban	
	roundabouts in 15 towns in western France.	116
Exhibit 5-15.	British crash rates for pedestrians at roundabouts and	
	signalized intersections.	117
Exhibit 5-16.	Percentage reduction in the number of accidents by	
	mode at 181 converted Dutch roundabouts.	117

Exhibit 5-17.	British crash rates (crashes per million trips) for	
	bicyclists and motorcyclists at roundabouts and	
	signalized intersections.	120
Exhibit 5-18.	A comparison of crashes between signalized and	
	roundabout intersections in 1998 in 15 French towns.	120

Chapter 6 - Geometric Design

Exhibit 6-1.	Basic geometric elements of a roundabout.	131
Exhibit 6-2.	Roundabout design process.	131
Exhibit 6-3.	Sample theoretical speed profile (urban compact	
	roundabout).	133
Exhibit 6-4.	Recommended maximum entry design speeds.	133
Exhibit 6-5.	Fastest vehicle path through single-lane roundabout.	134
Exhibit 6-6.	Fastest vehicle path through double-lane roundabout.	135
Exhibit 6-7.	Example of critical right-turn movement.	135
Exhibit 6-8.	Side friction factors at various speeds (metric units).	137
Exhibit 6-9.	Side friction factors at various speeds (U.S.	
	customary units).	137
Exhibit 6-10.	Speed-radius relationship (metric units).	138
Exhibit 6-11.	Speed-radius relationship (U.S. customary units).	138
Exhibit 6-12.	Vehicle path radii.	139
Exhibit 6.13.	Approximated R_4 values and corresponding R_1	
	values (metric units).	141
Exhibit 6-14.	Approximated R_4 values and corresponding R_1	
	values (U.S. customary units).	141
Exhibit 6-15.	Through-movement swept path of WB-15 (WB-50)	
	vehicle.	143
Exhibit 6-16.	Left-turn and right-turn swept paths of WB-15	
	(WB-50) vehicle.	143
Exhibit 6-17.	Key dimensions of nonmotorized design users.	144
Exhibit 6-18.	Radial alignment of entries.	145
Exhibit 6-19.	Recommended inscribed circle diameter ranges.	146
Exhibit 6-20.	Approach widening by adding full lane.	148
Exhibit 6-21.	Approach widening by entry flaring.	148
Exhibit 6-22.	Minimum circulatory lane widths for two-lane	
	roundabouts.	150

Exhibit 6-23.	Example of central island with a traversable apron.	151
Exhibit 6.24.	Single-lane roundabout entry design.	153
Exhibit 6-25.	Single-lane roundabout exit design.	154
Exhibit 6-26.	Minimum splitter island dimensions.	157
Exhibit 6-27.	Minimum splinter island nose radii and offsets.	158
Exhibit 6-28.	Design values for stopping sight distance.	159
Exhibit 6-29.	Approach sight distance.	160
Exhibit 6-30.	Sight distance on circulatory roadway.	160
Exhibit 6-31.	Sign distance to crosswalk on exit.	161
Exhibit 6-32.	Intersection sight distance.	162
Exhibit 6-33.	Computed length of conflicting leg of	
	intersection sight triangle.	163
Exhibit 6-34.	Sample plan view.	164
Exhibit 6-35.	Sample approach profile.	165
Exhibit 6-36.	Sample central island profile.	165
Exhibit 6-37.	Typical circulatory roadway section.	166
Exhibit 6-38.	Typical section with a truck apron.	166
Exhibit 6-39.	Provisions for bicycles.	168
Exhibit 6-40.	Sidewalk treatments.	169
Exhibit 6-41.	Example of right-turn bypass lane.	170
Exhibit 6-42.	Configuration of right-turn bypass lane with	
	acceleration lane.	171
Exhibit 6-43.	Configuration of right-turn bypass lane with	
	yield at exit leg.	172
Exhibit 6-44.	Sketched natural paths through a double-lane	
	roundabout.	173
Exhibit 6-45.	Path overlap at a double-lane roundabout.	174
Exhibit 6-46.	One method of entry design to avoid path overlap	
	at double-lane roundabouts.	175
Exhibit 6-47.	Alternate method of entry design to avoid path	
	overlap at double-lane roundabouts.	175
Exhibit 6-48.	Extended splitter island treatment.	178
Exhibit 6-49.	Use of successive curves on high-speed	
	approaches.	179
Exhibit 6-50	Example of mini-roundabout.	180

Chapter 7 - Traffic Design and Landscaping

Exhibit 7-1.	YIELD sign (R1-2).	186
Exhibit 7-2.	ONE WAY sign (R6-1R).	186
Exhibit 7-3.	KEEP RIGHT sign (R4-7).	186
Exhibit 7-4.	Lane-use control signing for roundabouts with double-	
	lane entries.	188
Exhibit 7-5.	Lane-use control signing for roundabouts with heavy turning traffic.	188
Exhibit 7-6.	Circular Intersection sign (W2-6).	189
Exhibit 7-7.	Advisory speed plate (W13-1).	189
Exhibit 7-8.	Roundabout Ahead Sign.	189
Exhibit 7-9.	YIELD AHEAD sign (W3-2a).	189
Exhibit 7-10.	Large Arrow sign (W1-6).	190
Exhibit 7-11.	Chevron plate (W1-8a.	190
Exhibit 7-12.	Pedestrian Crossing sign (W11-2a).	190
Exhibit 7-13.	Examples of advance destination guide signs.	191
Exhibit 7-14.	Exit guide sign (D1-1).	192
Exhibit 7-15.	Sample signing plan for an urban roundabout.	193
Exhibit 7-16.	Sample signing plan for a rural roundabout.	194
Exhibit 7-17.	Examples of speed reduction treatments.	195
Exhibit 7-18.	Sample signing plan for a mini-roundabout.	196
Exhibit 7-19.	Examples of yield lines.	198
Exhibit 7-20.	Approach pavement markings.	199
Exhibit 7-21.	Sample pavement marking plan for a mini-roundabout.	201
Exhibit 7-22.	Illumination of a roundabout.	202
Exhibit 7-23.	Recommended street illumination levels.	204
Exhibit 7-24.	Landscaping of the central island.	208

Chapter 8 - System Considerations

Exhibit 8-1.	Rail crossing treatments at roundabouts.	216
Exhibit 8-2.	Methods for accommodating a rail crossing adjacent	
	to a roundabout.	217
Exhibit 8.3.	Example of closely spaced offset T-intersections with	
	roundabouts.	218
Exhibit 8-4.	Through bypass lanes at staggered T-intersections.	218
Exhibit 8-5.	Two-bridge roundabout interchange.	219
Exhibit 8-6.	Example of two-bridge roundabout interchanges.	220
Exhibit 8-7.	Examples of one-bridge roundabout interchanges with	
	circular central islands.	221
Exhibit 8.8.	One-bridge roundabout interchange with raindrop-	
	shaped central islands.	222
Exhibit 8-9.	Roundabouts in an arterial network.	223
Exhibit 8-10.	Wide nodes and narrow roads.	226
Exhibit 8-11.	Summary of simulation models for roundabout	
	analysis.	228

Photo Credits

Barry Crown: Exhibits 8-6, 8-7

Ken Courage: Exhibit 1-5 (g, Portland)

Lee Rodegerdts: Exhibits 1-5 (all except g, Portland), 1-6 (all except Fort Pierce), 2-4 (all except Fort Pierce), 3-3, 3-4, 6-23, 6-42, 7-10 (all), 7-11 (all), 7-14 (all), 7-16 (all), 7-22, 8-7, 8-8, 8-9, C-3 (a, d-i, k-n)

Paul Ryus: Exhibits 1-6 (Fort Pierce), 2-4 (Fort Pierce), C-3 (b, c, j)