
Introduction

This book describes aspects of mathematical modeling, analysis, computer
simulation, and visualization that are widely used in the mathematical
sciences and engineering.

Scientists often use ordinary language models to describe observations
of physical and biological phenomena. These are precise where data are
known and appropriately imprecise otherwise. Ordinary language modelers
carve away chunks of the unknown as they collect more data. On the other
hand, mathematical modelers formulate minimal models that produce re-
sults similar to what is observed. This is the Ockham’s razor approach,
where simpler is better, with the caution from Einstein that “Everything
should be made as simple as possible, but not simpler.”

The success of mathematical models is difficult to explain. The same
tractable mathematical model describes such diverse phenomena as when
an epidemic will occur in a population or when chemical reactants will
begin an explosive chain-branched reaction, and another model describes
the motion of pendulums, the dynamics of cryogenic electronic devices, and
the dynamics of muscle contractions during childbirth.

Ordinary language models are necessary for the accumulation of experi-
mental knowledge, and mathematical models organize this information, test
logical consistency, predict numerical outcomes, and identify mechanisms
and parameters that characterize them.

Often mathematical models are quite complicated, but simple approx-
imations can be used to extract important information from them. For
example, the mechanisms of enzyme reactions are complex, but they can
be described by a single differential equation (the Michaelis–Menten equa-
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tion [14]) that identifies two useful parameters (the saturation constant and
uptake velocity) that are used to characterize reactions. So this modeling
and analysis identifies what are the critical data to collect. Another example
is Semenov’s theory of explosion limits [128], in which a single differential
equation can be extracted from over twenty chemical rate equations model-
ing chain-branched reactions to describe threshold combinations of pressure
and temperature that will result in an explosion.

Mathematical analysis includes geometrical forms, such as hyperbolic
structures, phase planes, and isoclines, and analytical methods that derive
from calculus and involve iterations, perturbations, and integral transforms.
Geometrical methods are elegant and help us visualize dynamical processes,
but analytical methods can deal with a broader range of problems, for ex-
ample, those including random perturbations and forcing over unbounded
time horizons. Analytical methods enable us to calculate precisely how
solutions depend on data in the model.

As humans, we occupy regions in space and time that are between very
small and very large and very slow and very fast. These intermediate
space and time scales are perceptible to us, but mathematical analysis
has helped us to perceive scales that are beyond our senses. For example,
it is very difficult to “understand” electric and magnetic fields. Instead,
our intuition is based on solutions to Maxwell’s equations. Fluid flows are
quite complicated and usually not accessible to experimental observations,
but our knowledge is shaped by the solutions of the Navier–Stokes equa-
tions. We can combine these multiple time and space scales together with
mathematical methods to unravel such complex dynamics. While realistic
mathematical models of physical or biological phenomena can be highly
complicated, there are mathematical methods that extract simplifications
to highlight and elucidate the underlying process. In some cases, engineers
use these representations to design novel and useful things.

We also live with varying levels of logical rigor in the mathematical
sciences that range from complete detailed proofs in sharply defined math-
ematical structures to using mathematics to probe other structures where
its validity is not known.

The mathematical methods presented and used here grew from several
different scientific sources. Work of Newton and Leibniz was partly rigor-
ous and partly speculative. The Göttingen school of Gauss, Klein, Hilbert,
and Courant was carried forward in the U.S. by Fritz John, James Stoker,
and Kurt Friedrichs, and they and their students developed many impor-
tant ideas that reached beyond rigorous differential equation models and
studied important problems in continuum mechanics and wave propaga-
tion. Russian and Ukrainian workers led by Liapunov, Bogoliubov, Krylov,
and Kolmogorov developed novel approaches to problems of bifurcation
and stability theory, statistical physics, random processes, and celestial
mechanics. Fourier’s and Poincaré’s work on mathematical physics and dy-
namical systems continues to provide new directions for us, and the U.S.
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mathematicians G. D. Birkhoff and N. Wiener and their students have con-
tributed to these topics as well. Analytical and geometrical perturbation
and iteration methods were important to all of this work, and all involved
different levels of rigor.

Computer simulations have enabled us to study models beyond the reach
of mathematical analysis. For example, mathematical methods can provide
a language for modeling and some information, such as existence, unique-
ness, and stability, about their solutions. And then well executed computer
algorithms and visualizations provide further qualitative and quantitative
information about solutions. The computer simulations presented here de-
scribe and illustrate several critical computer experiments that produced
important and interesting results.

Analysis and computer simulations of mathematical models are im-
portant parts of understanding physical and biological phenomena. The
knowledge created in modeling, analysis, simulation, and visualization
contributes to revealing the secrets they embody.

The first two chapters present background material for later topics in
the book, and they are not intended to be complete presentations of Linear
Systems (Chapter 1) and Dynamical Systems (Chapter 2). There are many
excellent texts and research monographs dealing with these topics in great
detail, and the reader is referred to them for rigorous developments and
interesting applications. In fact, to keep this book to a reasonable size
while still covering the wide variety of topics presented here, detailed proofs
are not usually given, except in cases where there are minimal notational
investments and the proofs give readily accessible insight into the meaning
of the theorem. For example, I see no reason to present the details of proofs
for the Implicit Function Theorem or for the main results of Liapunov’s
stability theory. Still, these results are central to this book. On the other
hand, the complete proofs of some results, like the Averaging Theorem for
Difference Equations, are presented in detail.

The remaining chapters of this book present a variety of mathematical
methods for solving problems that are sorted by behavior (e.g., bifurca-
tion, stability, resonance, rapid oscillations, and fast transients). However,
interwoven throughout the book are topics that reappear in many differ-
ent, often surprising, incarnations. For example, the cusp singularity and
the property of stability under persistent disturbances arise often. The
following list describes cross-cutting mathematical topics in this book.

1. Perturbations. Even the words used here cause some problems. For
example, perturb means to throw into confusion, but its purpose here is
to relate to a simpler situation. While the perturbed problem is confused,
the unperturbed problem should be understandable. Perturbations usually
involve the identification of parameters, which unfortunately is often mis-
understood by students to be perimeters from their studies of geometry.
Done right, parameters should be dimensionless numbers that result from
the model, such as ratios of eigenvalues of linear problems. Parameter iden-
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tification in problems might involve difficult mathematical preprocessing in
applications. However, once this is done, basic perturbation methods can
be used to understand the perturbed problem in terms of solutions to the
unperturbed problem. Basic perturbation methods used here are Taylor’s
method for approximating a smooth function by a polynomial and Laplace’s
method for the approximation of integral formulas. These lead to the im-
plicit function theorem and variants of it, and to matching, averaging, and
central-limit theorems. Adaptations of these methods to various other prob-
lems are described here. Two particularly useful perturbation methods are
the method of averaging and the quasistatic-state approximation. These
are dealt with in detail in Chapters 7 and 8, respectively.

2. Iterations. Iterations are mathematical procedures that begin with a
state vector and change it according to some rule. The same rule is applied
to the new state, and so on, and a sequence of iterates of the rule results.
Fra Fibonacci in 1202 introduced a famous iteration that describes the
dynamics of an age-structured population. In Fibonacci’s case, a population
was studied, geometric growth was deduced, and the results were used to
describe the compounding of interest on investments.

Several iterations are studied here. First, Newton’s method, which con-
tinues to be the paradigm for iteration methods, is studied. Next, we study
Duffing’s iterative method and compare the results with similar ones de-
rived using perturbation methods. Finally, we study chaotic behavior that
often occurs when quite simple functions are iterated. There has been a
controversy of sorts between iterationists and perturbationists; each has its
advocates and each approach is useful.

3. Chaos. The term was introduced in its present connotation by Yorke
and Li in 1976 [101, 48]. It is not a precisely defined concept, but it occurs in
various physical and religious settings. For example, Boltzmann used it in a
sense that eventually resulted in ergodic theories for dynamical systems and
random processes, and Poincaré had a clear image of the chaotic behavior
of dynamical systems that occurs when stable and unstable manifolds cross.
The book of Genesis begins with chaos, and philosophical discussions about
it and randomness continue to this day. For the most part, the word chaos
is used here to indicate behavior of solutions to mathematical models that
is highly irregular and usually unexpected. We study several problems that
are known to exhibit chaotic behavior and present methods for uncovering
and describing this behavior. Related to chaotic systems are the following:

a. Almost periodic functions and generalized Fourier analysis [11, 140].

b. Poincaré’s stroboscopic mappings, which are based on snapshots of
a solution at fixed time intervals—“Chaos, illumined by flashes of
lightning” [from Oscar Wilde in another context] [111].
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c. Fractals, which are space filling curves that have been studied since
Weierstrass, Hausdorff, Richardson, and Peano a century ago and
more recently by Mandelbrodt [107].

d. Catastrophes, which were introduced by René Thom [133] in the
1960s.

e. Fluid turbulence that occurs in convective instabilities described by
Lorenz and Keller [104].

f. Irregular ecological dynamics studied by Ricker and May [48].

g. Random processes, including the Law of Large Numbers and ergodic
and other limit theorems [82].

These and many other useful and interesting aspects of chaos are described
here.

4. Oscillations. Oscillators play fundamental roles in our lives—
“discontented pendulums that we are” [R.W. Emerson]. For example, most
of the cells in our bodies live an oscillatory life in an oscillating chemical
environment. The study of pendulums gives great insight into oscillators,
and we focus a significant effort here in studying pendulums and similar
physical and electronic devices.

One of the most interesting aspects of oscillators is their tendency to syn-
chronize with other nearby oscillators. This had been observed by musicians
dating back at least to the time of Aristotle, and eventually it was addressed
as a mathematical problem by Huygens in the 17th century and Korteweg
around 1900 [142]. This phenomenon is referred to as phase locking, and
it now serves as a fundamental ingredient in the design of communications
and computer-timing circuits. Phase locking is studied here for a variety of
different oscillator populations using the rotation vector method. For ex-
ample, using the VCON model of a nerve cell, we model neural networks as
being flows on high-dimensional tori. Phase locking occurs when the flow
reduces to a knot on the torus for the original and all nearby systems.

5. Stability. The stability of physical systems is often described using
energy methods. These methods have been adapted to more general dy-
namical systems by Liapunov and others. Although we do study linear and
Liapunov stability properties of systems here, the most important stability
concept used here is that of stability under persistent disturbances. This
idea explains why mathematical results obtained for minimal models can
often describe behavior of systems that are operating in noisy environ-
ments. For example, think of a metal bowl having a lowest point in it. A
marble placed in the bowl will eventually move to the minimum point. If
the bowl is now dented with many small craters or if small holes are put
in it, the marble will still move to near where the minimum of the original
bowl had been, and the degree of closeness can be determined from the
size of the dents and holes. The dents and the holes introduce irregular
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disturbances to the system, but the dynamics of the marble are similar in
both the simple (ideal) bowl and the imperfect (realized) bowl.

Stability under persistent disturbances is sometimes confused with struc-
tural stability. The two are quite different. Structural stability is a concept
introduced to describe systems whose behavior does not change when the
system is slightly perturbed. Hyperbolic structures are particularly im-
portant examples of this. However, it is the changes in behavior when a
system is slightly perturbed that are often the only things observable in ex-
periments: Did something change? Stability under persistent disturbances
carries through such changes. For example, the differential equation

ẋ = ax − x3 + εf(t),

where f is bounded and integrable, ε is small, and a is another parameter,
occurs in many models. When ε = 0 and a increases through the value
a = 0, the structure of static state solutions changes dramatically: For
a < 0, there is only one (real) static state, x = 0; but for a > 0 there
are three: x = ±√

a are stable static states, and x = 0 is an unstable
one. This problem is important in applications, but it is not structurally
stable at a = 0. Still, there is a Liapunov function for a neighborhood of
x = 0, a = 0, ε = 0, namely, V (x) = x2. So, the system is stable under
persistent disturbances. Stability under persistent disturbances is based on
results of Liapunov, Malkin, and Massera that we study here.

6. Computer simulation. The two major topics studied in this book are
mathematical analysis and computer simulation of mathematical models.
Each has its uses, its strengths, and its deficiencies. Our mathematical anal-
ysis builds mostly on perturbation and iteration methods: They are often
difficult to use, but once they are understood, they can provide information
about systems that is not otherwise available. Understanding them for the
examples presented here also lays a basis for one to use computer packages
such as Mathematica, Matlab or Maple to construct perturbation expan-
sions. Analytical methods can explain regular behavior of noisy systems,
they can simplify complicated systems with fidelity to real behavior, and
they can go beyond the edges of practical computability in dealing with
fast processes (e.g., rapid chemical reactions) and small quantities (e.g.,
trace-element calculations).

Computer simulation replaces much of the work formerly done by mathe-
maticians (often as graduate students), and sophisticated software packages
are increasing simulation power. Simulations illustrate solutions of a math-
ematical model by describing a sample trajectory, or sample path, of the
process. Sample paths can be processed in a variety of ways—plotting, cal-
culating ensemble statistics, and so on. Simulations do not describe the
dependence of solutions on model parameters, nor are their stability, ac-
curacy, or reliability always assured. They do not deal well with chaotics
or unexpected catastrophes—irregular or unexpected rapid changes in a
solution—and it is usually difficult to determine when chaos lurks nearby.
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Mathematical analysis makes possible computer simulations; conversely,
computer simulations can help with mathematical analysis. New computer-
based methods are being derived with parallelization of computations,
simplification of models through automatic preprocessing, and so on, and
the future holds great promise for combined work of mathematical and
computer-based analysis. There have been many successes to date, for
example the discovery and analysis of solitons.

The material in this book is not presented in order of increasing difficulty.
The first two chapters provide background information for the last six chap-
ters, where oscillation, iteration, and perturbation techniques and examples
are developed. We begin with three examples that are useful throughout
the rest of the book. These are electrical circuits and pendulums. Next,
we describe linear systems and spectral decomposition methods for solv-
ing them. These involve finding eigenvalues of matrices and deducing how
they are involved in the solution of a problem. In the second chapter we
study dynamical systems, beginning with descriptions of how periodic or
almost periodic solutions can be found in nonlinear dynamical systems
using methods ranging from Poincaré and Bendixson’s method for two dif-
ferential equations to entropy methods for nonlinear iterations. The third
chapter presents stability methods for studying nonlinear systems. Partic-
ularly important for later work is the method of stability under persistent
disturbances.

The remainder of the book deals with methods of approximation and
simulation. First, some useful algebraic and topological methods are de-
scribed, followed by a study of implicit function theorems and modifications
and generalizations of them. These are applied to several bifurcation prob-
lems. Then, regular perturbation problems are studied, in which a small
parameter is identified and the solutions are constructed directly using the
parameter. This is illustrated by several important problems in nonlinear
oscillations, including Duffing’s equation and nonlinear resonance.

In Chapter 7 the method of averaging is presented. This is one of the most
interesting techniques in all of mathematics. It is closely related to Fourier
analysis, to the Law of Large Numbers in probability theory, and to the
dynamics of physical and biological systems in oscillatory environments.
We describe here multitime methods, Bogoliubov’s transformation, and
integrable systems methods.

Finally, the method of quasistatic-state approximations is presented.
This method has been around in various useful forms since 1900, and it
has been called by a variety of names—the method of matched asymptotic
expansions being among the most civil. It has been derived in some quite
complicated ways and in some quite simple ones. The approach taken here
is of quasistatic manifolds, which has a clear geometric flavor that can aid
intuition. It combines the geometric approach of Hadamard with the an-
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alytical methods of Perron to construct stable and unstable manifolds for
systems that might involve irregular external forcing.

In rough terms, averaging applies when a system involves rapid oscilla-
tions that are slowly modulated, and quasistatic-state approximations are
used when solutions decay rapidly to a manifold on which motions are
slower. When problems arise where both kinds of behavior occur, they can
often be unraveled. But there are many important problems where neither
of these methods apply, including diffraction by crossed wires in electro-
magnetic theory, stagnation points in fluid flows, flows in domains with
sharp corners, and problems with intermittent rapid time scales.

I have taught courses based on this book in a variety of ways depend-
ing on the time available and the background of the students. When the
material is taught as a full year course for graduate students in mathe-
matics and engineering, I cover the whole book. Other times I have taken
more advanced students who have had a good course in ordinary differential
equations directly to Chapters 4, 5, 6, 7, and 8. A one quarter course is pos-
sible using, for example, Chapters 1, 7, and 8. For the most part Chapters 1
and 2 are intended as background material for the later chapters, although
they contain some important computer simulations that I like to cover in
all of my presentations of this material. A course in computer simulations
could deal with sections from Chapters 2, 4, 7, and 8. The exercises also
contain several simulations that have been interesting and useful.

The exercises are graded roughly in increasing difficulty in each chapter.
Some are quite straightforward illustrations of material in the text, and
others are quite lengthy projects requiring extensive mathematical analysis
or computer simulation. I have tried to warn readers about more difficult
problems with an asterisk where appropriate.

Students must have some degree of familiarity with methods of ordinary
differential equations, for example, from a course based on Coddington
and Levinson [24], Hale [58], or Hirsch and Smale [68]. They should also be
competent with matrix methods and be able to use a reference text such as
Gantmacher [46]. Some familiarity with Interpretation of Dreams [45] has
also been found to be useful by some students.
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Paradise Valley, Arizona
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