PART I Principles of Design and Stress Analysis 1

The Nature of Mechanical Design 2

The Big Picture 3

You Are the Designer 9

- 1-1 Objectives of This Chapter 9
- 1–2 The Mechanical Design Process 9
- 1-3 Skills Needed in Mechanical Design 11
- 1-4 Functions, Design Requirements, and Evaluation Criteria 11
- 1-5 Example of the Integration of Machine Elements into a Mechanical Design 14
- 1-6 Computational Aids in This Book 17
- 1–7 Design Calculations 17
- 1–8 Preferred Basic Sizes, Screw Threads, and Standard Shapes 18
- 1-9 Unit Systems 24
- 1-10 Distinction among Weight, Force, and Mass 26

References 27

Internet Sites 27

Problems 28

2 Materials in Mechanical Design 29

The Big Picture 30

You Are the Designer 31

- 2-1 Objectives of This Chapter 32
- 2-2 Properties of Materials 32
- 2-3 Classification of Metals and Alloys 44
- 2-4 Variability of Material Properties Data 45
- 2-5 Carbon and Alloy Steel 46
- 2-6 Conditions for Steels and Heat Treatment 49
- 2-7 Stainless Steels 53
- 2-8 Structural Steel 54

- 2-9 Tool Steels 54
- 2-10 Cast Iron 54
- 2-11 Powdered Metals 56
- 2-12 Aluminum 57
- 2-13 Zinc Alloys 59
- 2-14 Titanium 60
- 2-15 Copper, Brass, and Bronze 60
- 2-16 Nickel-Based Alloys 61
- 2-17 Plastics 61
- 2-18 Composite Materials 65
- 2-19 Materials Selection 77

References 78

Internet Sites 79

Problems 80

3 Stress and Deformation Analysis 83

The Big Picture 84

- 3-1 Objectives of This Chapter 89
- 3-2 Philosophy of a Safe Design 89
- 3-3 Representing Stresses on a Stress Element 89
- 3-4 Direct Stresses: Tension and Compression 90
- 3–5 Deformation under Direct Axial Loading 92
- 3-6 Direct Shear Stress 92
- 3–7 Relationship among Torque, Power, and Rotational Speed 94
- 3-8 Torsional Shear Stress 95
- 3-9 Torsional Deformation 97
- 3-10 Torsion in Members Having Noncircular Cross Sections 98
- 3-11 Torsion in Closed, Thin-Walled Tubes 100
- **3–12** Open Tubes and a Comparison with Closed Tubes 100
- 3–13 Vertical Shearing Stress 102
- 3-14 Special Shearing Stress Formulas 104

viii

- 3-15 Stress Due to Bending 105
- 3–16 Flexural Center for Beams 107
- 3-17 Beam Deflections 108
- 3–18 Equations for Deflected Beam Shape 110
- 3–19 Beams with Concentrated Bending Moments 112
- 3-20 Combined Normal Stresses: Superposition Principle 117
- 3-21 Stress Concentrations 119
- **3–22** Notch Sensitivity and Strength Reduction Factor 122

References 123

Internet Sites 123

Problems 123

4 Combined Stresses and Mohr's Circle 135

The Big Picture 136

You Are the Designer 136

- 4-1 Objectives of This Chapter 138
- 4-2 General Case of Combined Stress 138
- 4-3 Mohr's Circle 145
- 4-4 Mohr's Circle Practice Problems 151
- 4–5 Case When Both Principal Stresses Have the Same Sign 155
- 4-6 Mohr's Circle for Special Stress Conditions 158
- 4–7 Analysis of Complex Loading Conditions 161

References 162

- Internet Site 162
- Problems 162
- 5 Design for Different Types of Loading 163

The Big Picture 164

You Are the Designer 166

- 5-1 Objectives of This Chapter 166
- 5-2 Types of Loading and Stress Ratio 166
- 5-3 Endurance Strength 172
- 5-4 Estimated Actual Endurance Strength, s' 173
- 5–5 Example Problems for Estimating Actual Endurance Strength 181

- **5–6** Design Philosophy 182
- 5–7 Design Factors 185
- 5-8 Predictions of Failure 186
- 5–9 Design Analysis Methods 193
- 5–10 General Design Procedure 197
- 5-11 Design Examples 200
- 5-12 Statistical Approaches to Design 213
- 5-13 Finite Life and Damage Accumulation Method 214

References 218

Problems 219

6 Columns 229

The Big Picture 230

You Are the Designer 231

- 6-1 Objectives of This Chapter 231
- 6-2 Properties of the Cross Section of a Column 232
- 6-3 End Fixity and Effective Length 232
- 6-4 Slenderness Ratio 234
- 6-5 Transition Slenderness Ratio 234
- 6-6 Long Column Analysis: The Euler Formula 235
- 6–7 Short Column Analysis: The J. B. Johnson Formula 239
- 6-8 Column Analysis Spreadsheet 241
- 6-9 Efficient Shapes for Column Cross Sections 244
- 6-10 The Design of Columns 245
- 6-11 Crooked Columns 250
- 6-12 Eccentrically Loaded Columns 251

References 257

Problems 257

PART II Design of a Mechanical Drive 261

7 Belt Drives and Chain Drives 264

The Big Picture 265

- 7-1 Objectives of This Chapter 267
- 7-2 Types of Belt Drives 268

PART I Principles of Design and Stress Analysis 1

The Nature of Mechanical Design 2

The Big Picture 3

You Are the Designer 9

- 1-1 Objectives of This Chapter 9
- 1–2 The Mechanical Design Process 9
- 1-3 Skills Needed in Mechanical Design 11
- 1-4 Functions, Design Requirements, and Evaluation Criteria 11
- 1-5 Example of the Integration of Machine Elements into a Mechanical Design 14
- 1-6 Computational Aids in This Book 17
- 1–7 Design Calculations 17
- 1–8 Preferred Basic Sizes, Screw Threads, and Standard Shapes 18
- 1-9 Unit Systems 24
- 1-10 Distinction among Weight, Force, and Mass 26

References 27

Internet Sites 27

Problems 28

2 Materials in Mechanical Design 29

The Big Picture 30

You Are the Designer 31

- 2-1 Objectives of This Chapter 32
- 2-2 Properties of Materials 32
- 2-3 Classification of Metals and Alloys 44
- 2-4 Variability of Material Properties Data 45
- 2-5 Carbon and Alloy Steel 46
- 2-6 Conditions for Steels and Heat Treatment 49
- 2-7 Stainless Steels 53
- 2-8 Structural Steel 54

- 2-9 Tool Steels 54
- 2-10 Cast Iron 54
- 2-11 Powdered Metals 56
- 2-12 Aluminum 57
- 2-13 Zinc Alloys 59
- 2-14 Titanium 60
- 2-15 Copper, Brass, and Bronze 60
- 2-16 Nickel-Based Alloys 61
- 2-17 Plastics 61
- 2-18 Composite Materials 65
- 2-19 Materials Selection 77

References 78

Internet Sites 79

Problems 80

3 Stress and Deformation Analysis 83

The Big Picture 84

- 3-1 Objectives of This Chapter 89
- 3-2 Philosophy of a Safe Design 89
- 3-3 Representing Stresses on a Stress Element 89
- 3-4 Direct Stresses: Tension and Compression 90
- 3–5 Deformation under Direct Axial Loading 92
- 3-6 Direct Shear Stress 92
- 3–7 Relationship among Torque, Power, and Rotational Speed 94
- 3-8 Torsional Shear Stress 95
- 3-9 Torsional Deformation 97
- 3-10 Torsion in Members Having Noncircular Cross Sections 98
- 3-11 Torsion in Closed, Thin-Walled Tubes 100
- **3–12** Open Tubes and a Comparison with Closed Tubes 100
- 3–13 Vertical Shearing Stress 102
- 3-14 Special Shearing Stress Formulas 104

viii

- 3-15 Stress Due to Bending 105
- 3–16 Flexural Center for Beams 107
- 3-17 Beam Deflections 108
- 3–18 Equations for Deflected Beam Shape 110
- 3–19 Beams with Concentrated Bending Moments 112
- 3-20 Combined Normal Stresses: Superposition Principle 117
- 3-21 Stress Concentrations 119
- **3–22** Notch Sensitivity and Strength Reduction Factor 122

References 123

Internet Sites 123

Problems 123

4 Combined Stresses and Mohr's Circle 135

The Big Picture 136

You Are the Designer 136

- 4-1 Objectives of This Chapter 138
- 4-2 General Case of Combined Stress 138
- 4-3 Mohr's Circle 145
- 4-4 Mohr's Circle Practice Problems 151
- 4–5 Case When Both Principal Stresses Have the Same Sign 155
- 4-6 Mohr's Circle for Special Stress Conditions 158
- 4–7 Analysis of Complex Loading Conditions 161

References 162

- Internet Site 162
- Problems 162
- 5 Design for Different Types of Loading 163

The Big Picture 164

You Are the Designer 166

- 5-1 Objectives of This Chapter 166
- 5-2 Types of Loading and Stress Ratio 166
- 5-3 Endurance Strength 172
- 5-4 Estimated Actual Endurance Strength, s' 173
- 5–5 Example Problems for Estimating Actual Endurance Strength 181

- **5–6** Design Philosophy 182
- 5–7 Design Factors 185
- 5-8 Predictions of Failure 186
- 5–9 Design Analysis Methods 193
- 5–10 General Design Procedure 197
- 5-11 Design Examples 200
- 5-12 Statistical Approaches to Design 213
- 5-13 Finite Life and Damage Accumulation Method 214

References 218

Problems 219

6 Columns 229

The Big Picture 230

You Are the Designer 231

- 6-1 Objectives of This Chapter 231
- 6-2 Properties of the Cross Section of a Column 232
- 6-3 End Fixity and Effective Length 232
- 6-4 Slenderness Ratio 234
- 6-5 Transition Slenderness Ratio 234
- 6-6 Long Column Analysis: The Euler Formula 235
- 6–7 Short Column Analysis: The J. B. Johnson Formula 239
- 6-8 Column Analysis Spreadsheet 241
- 6-9 Efficient Shapes for Column Cross Sections 244
- 6-10 The Design of Columns 245
- 6-11 Crooked Columns 250
- 6-12 Eccentrically Loaded Columns 251

References 257

Problems 257

PART II Design of a Mechanical Drive 261

7 Belt Drives and Chain Drives 264

The Big Picture 265

- 7-1 Objectives of This Chapter 267
- 7-2 Types of Belt Drives 268

- 7-3 V-Belt Drives 269
- 7-4 V-Belt Drive Design 272
- 7-5 Chain Drives 283
- 7-6 Design of Chain Drives 285

References 296

Internet Sites 298

Problems 298

- 8 Kinematics of Gears 300
- The Big Picture 301
- You Are the Designer 305
- 8-1 Objectives of This Chapter 306
- 8-2 Spur Gear Styles 306
- 8-3 Spur Gear Geometry: Involute-Tooth Form 307
- 8-4 Spur Gear Nomenclature and Gear-Tooth Features 308
- 8–5 Interference between Mating Spur Gear Teeth 320
- 8–6 Velocity Ratio and Gear Trains 322
- 8–7 Helical Gear Geometry 329
- 8-8 Bevel Gear Geometry 333
- 8-9 Types of Wormgearing 339
- 8-10 Geometry of Worms and Wormgears 341
- 8-11 Typical Geometry of Wormgear Sets 344
- 8–12 Train Value for Complex Gear Trains 347
- 8–13 Devising Gear Trains 350

References 357

Internet Sites 357

Problems 358

- 9 Spur Gear Design 363
- The Big Picture 364

You Are the Designer 365

- 9–1 Objectives of This Chapter 365
- 9–2 Concepts from Previous Chapters 366
- 9-3 Forces, Torque, and Power in Gearing 367
- 9-4 Gear Manufacture 370
- 9–5 Gear Quality 372
- 9–6 Allowable Stress Numbers 378
- 9-7 Metallic Gear Materials 379
- 9-8 Stresses in Gear Teeth 385

- 9-9 Selection of Gear Material Based on Bending Stress 394
- 9-10 Pitting Resistance of Gear Teeth 399
- 9–11 Selection of Gear Material Based on Contact Stress 402
- 9-12 Design of Spur Gears 407
- 9–13 Gear Design for the Metric Module System 413
- 9–14 Computer-Aided Spur Gear Design and Analysis 415
- 9-15 Use of the Spur Gear Design Spreadsheet 419
- 9–16 Power-Transmitting Capacity 428
- 9–17 Practical Considerations for Gears and Interfaces with Other Elements 430
- 9-18 Plastics Gearing 434

References 442

Internet Sites 443

Problems 444

- 10 Helical Gears, Bevel Gears, and Wormgearing 449
- The Big Picture 450

- **10–1** Objectives of This Chapter 452
- **10–2** Forces on Helical Gear Teeth 452
- 10-3 Stresses in Helical Gear Teeth 455
- 10-4 Pitting Resistance for Helical Gear Teeth 459
- 10-5 Design of Helical Gears 460
- 10-6 Forces on Straight Bevel Gears 463
- 10–7 Bearing Forces on Shafts Carrying Bevel Gears 465
- 10–8 Bending Moments on Shafts Carrying Bevel Gears 470
- **10–9** Stresses in Straight Bevel Gear Teeth 470
- **10–10** Design of Bevel Gears for Pitting Resistance 473
- 10–11 Forces, Friction, and Efficiency in Wormgear Sets 475
- 10-12 Stress in Wormgear Teeth 481
- 10–13 Surface Durability of Wormgear Drives 482
- References 488
- Internet Sites 488
- Problems 489

х

11 Keys, Couplings, and Seals 491

The Big Picture 492

You Are the Designer 493

11-1 Objectives of This Chapter 493

11-2 Keys 494

- 11-3 Materials for Keys 498
- 11–4 Stress Analysis to Determine Key Length 499
- 11-5 Splines 503
- 11-6 Other Methods of Fastening Elements to Shafts 508
- 11-7 Couplings 513
- 11-8 Universal Joints 516
- 11–9 Retaining Rings and Other Means of Axial Location 518
- 11-10 Types of Seals 521
- 11-11 Seal Materials 525

References 526

Internet Sites 527

Problems 528

12 Shaft Design 530

The Big Picture 531

You Are the Designer 532

- 12-1 Objectives of This Chapter 532
- 12-2 Shaft Design Procedure 532
- 12–3 Forces Exerted on Shafts by Machine Elements 535
- 12-4 Stress Concentrations in Shafts 540
- 12-5 Design Stresses for Shafts 543
- 12-6 Shafts in Bending and Torsion Only 546
- 12-7 Shaft Design Example 548
- 12-8 Recommended Basic Sizes for Shafts 552
- 12-9 Additional Design Examples 553
- 12-10 Spreadsheet Aid for Shaft Design 561
- 12-11 Shaft Rigidity and Dynamic Considerations 562
- 12-12 Flexible Shafts 563

References 564

Internet Sites 564

Problems 565

Tolerances and Fits 575 13 The Big Picture 576 You Are the Designer 577 13-1 Objectives of This Chapter 577 13–2 Factors Affecting Tolerances and Fits 578 13-3 Tolerances, Production Processes, and Cost 578 13-4 Preferred Basic Sizes 581 13-5 Clearance Fits 581 13-6 Interference Fits 585 13-7 Transition Fits 586 13-8 Stresses for Force Fits 587 13–9 General Tolerancing Methods 591 13–10 Robust Product Design 592 References 594 Internet Sites 594 Problems 595

- 14 Rolling Contact Bearings 597
- The Big Picture 598
- You Are the Designer 599
- 14-1 Objectives of This Chapter 600
- 14–2 Types of Rolling Contact Bearings 600
- 14-3 Thrust Bearings 604
- 14-4 Mounted Bearings 604
- 14-5 Bearing Materials 606
- 14-6 Load/Life Relationship 606
- 14-7 Bearing Manufacturers' Data 606
- 14-8 Design Life 611
- 14-9 Bearing Selection: Radial Loads Only 613
- 14-10 Bearing Selection: Radial and Thrust Loads Combined 614
- 14-11 Mounting of Bearings 616
- 14-12 Tapered Roller Bearings 618
- 14–13 Practical Considerations in the Application of Bearings 621
- 14–14 Importance of Oil Film Thickness in Bearings 624
- 14-15 Life Prediction under Varying Loads 625

References 627

Internet Sites 627

Problems 628

15 Completion of the Design of a Power Transmission 630

The Big Picture 631

- 15-1 Objectives of This Chapter 631
- 15-2 Description of the Power Transmission to Be Designed 631
- 15–3 Design Alternatives and Selection of the Design Approach 633
- 15-4 Design Alternatives for the Gear-Type Reducer 635
- 15-5 General Layout and Design Details of the Reducer 635
- **15–6** Final Design Details for the Shafts 652
- 15-7 Assembly Drawing 655

References 657

Internet Sites 657

PART III Design Details and Other Machine Elements 659

16 Plain Surface Bearings 660

The Big Picture 661

You Are the Designer 663

- 16-1 Objectives of This Chapter 663
- 16–2 The Bearing Design Task 663
- 16-3 Bearing Parameter, µn/p 665
- 16-4 Bearing Materials 666
- 16-5 Design of Boundary-Lubricated Bearings 668
- 16-6 Full-Film Hydrodynamic Bearings 674
- 16–7 Design of Full-Film Hydrodynamically Lubricated Bearings 675
- 16–8 Practical Considerations for Plain Surface Bearings 682
- 16-9 Hydrostatic Bearings 683

16-10 Tribology: Friction, Lubrication, and Wear 687

References 691

- Internet Sites 692
- Problems 693

17 Linear Motion Elements 694

The Big Picture 695 You Are the Designer 698

- 17-1 Objectives of This Chapter 698
- 17-2 Power Screws 699
- 17-3 Ball Screws 704
- 17–4 Application Considerations for Power Screws and Ball Screws 707

References 709

Internet Sites 709

Problems 709

- 18 Fasteners 711
- The Big Picture 713

You Are the Designer 714

- 18-1 Objectives of This Chapter 714
- 18-2 Bolt Materials and Strength 714
- 18–3 Thread Designations and Stress Area 717
- 18–4 Clamping Load and Tightening of Bolted Joints 719
- 18–5 Externally Applied Force on a Bolted Joint 722
- **18–6** Thread Stripping Strength 723
- 18–7 Other Types of Fasteners and Accessories 724
- **18–8** Other Means of Fastening and Joining 726

References 727

Internet Sites 727

Problems 728

- 19 Springs 729
- The Big Picture 730

You Are the Designer 731

- 19-1 Objectives of This Chapter 732
- 19-2 Kinds of Springs 732
- 19–3 Helical Compression Springs 735
- 19–4 Stresses and Deflection for Helical Compression Springs 744
- 19-5 Analysis of Spring Characteristics 746
- 19-6 Design of Helical Compression Springs 749
- 19-7 Extension Springs 757
- 19-8 Helical Torsion Springs 762
- 19–9 Improving Spring Performance by Shot Peening 769
- 19-10 Spring Manufacturing 770

References 770

Internet Sites 770

Problems 771

20 Machine Frames, Bolted Connections, and Welded Joints 773

The Big Picture 774

You Are the Designer 775

- 20-1 Objectives of This Chapter 775
- 20-2 Machine Frames and Structures 776
- 20-3 Eccentrically Loaded Bolted Joints 780

20-4 Welded Joints 783

References 792

Internet Sites 792

Problems 793

21 Electric Motors and Controls 795

The Big Picture 796

You Are the Designer 797

- 21-1 Objectives of This Chapter 797
- 21–2 Motor Selection Factors 798
- 21–3 AC Power and General Information about AC Motors 799
- 21–4 Principles of Operation of AC Induction Motors 800
- 21–5 AC Motor Performance 802
- 21-6 Three-Phase, Squirrel-Cage Induction Motors 803
- 21-7 Single-Phase Motors 806
- 21–8 AC Motor Frame Types and Enclosures 808
- 21-9 Controls for AC Motors 811
- 21-10 DC Power 820
- 21-11 DC Motors 821
- 21-12 DC Motor Control 824

21-13 Other Types of Motors 824

References 826

Internet Sites 827

Problems 827

22 Motion Control: Clutches and Brakes 830

The Big Picture 831

- You Are the Designer 833
- 22-1 Objectives of This Chapter 833
- 22-2 Descriptions of Clutches and Brakes 833

- 22-3 Types of Friction Clutches and Brakes 835
- 22-4 Performance Parameters 840
- 22-5 Time Required to Accelerate a Load 841
- 22-6 Inertia of a System Referred to the Clutch Shaft Speed 844
- 22–7 Effective Inertia for Bodies Moving Linearly 845
- 22–8 Energy Absorption: Heat-Dissipation Requirements 846
- 22-9 Response Time 847
- 22-10 Friction Materials and Coefficient of Friction 849
- 22-11 Plate-Type Clutch or Brake 851
- 22–12 Caliper Disc Brakes 854
- 22-13 Cone Clutch or Brake 854
- 22-14 Drum Brakes 855
- 22-15 Band Brakes 860
- 22–16 Other Types of Clutches and Brakes 862

References 864

Internet Sites 864

Problems 865

23 Design Projects 867

- 23-1 Objectives of This Chapter 868
- 23-2 Design Projects 868

Appendices A-1

Appendix 1 Properties of Areas A-1 Appendix 2 Preferred Basic Sizes and Screw Threads A-3 Appendix 3 Design Properties of Carbon and Alloy Steels A-6 Appendix 4 Properties of Heat-Treated Steels A-8 Appendix 5 Properties of Carburized Steels A-11 Appendix 6 Properties of Stainless Steels A-12 Appendix 7 Properties of Structural Steels A-13 Appendix 8 Design Properties of Cast Iron A-14 Appendix 9 Typical Properties of Aluminum A-15 Appendix 10 Typical Properties of Zinc Casting Alloys A-16 Appendix 11 Properties of Titanium Alloys A-16

Appendix 12	Properties of Bronzes A-17
Appendix 13	Typical Properties of Selected Plastics A-17
Appendix 14	Beam-Deflection Formulas A-18
Appendix 15	Stress Concentration Factors A-27
Appendix 16	Steel Structural Shapes A-31
Annondin 17	Aluminum Constant Change A 27

Appendix 17 Aluminum Structural Shapes A-37

Appendix 18	Conversion Factors	A-39	
		1000 1000 1000	

Appendix 19 Hardness Conversion Table A-40

Appendix 20 Geometry Factor *I* for Pitting for Spur Gears A-41

Answers to Selected Problems A-44

Index I-1