contents

1	1 INTRODUCTION
1	1 ,] HISTORICAL SURVEY
3	1.2 NOTATION AND UNITS
.4	1.3 UNITS OF ENERGY AND MOMENTUM
5	1.4 ATOMIC MASS UNIT
6	1.5 PROPAGATION OF WAVES; PHASE AND GROUP SPEEDS
8	1.6 COMPLEX NUMBERS
11	2 PROBABILITY
1.2	2.1 DEFINITION OF PROBABILITY
13	2.2 SUMS OF PROBABILITIES
14	2.3 CALCULATION OF PROBABILITIES BY COUNTING
14	2.4 PROBABILITY OF SEVERAL EVENTS OCCURRING TOGETHER
1.5	2.5 SUMMARY OF RULES FOR CALCULATING PROBABILITIES
16	2.6 DISTRIBUTION FUNCTIONS FOR COIN FLIPPING
	2.7 DISTRIBUTION FUNCTIONS FOR MORE THAN TWO POSSIBLE
19	OUTCOMES
20	2.8 EXPECTATION VALUES
2 1	2.9 NORMALIZATION
2 1	2.10 EXPECTATION VALUE OF THE NUMBER OF HEADS
22	2.1 1 EXPERIMENTAL DETERMINATION OF PROBABILITY
24	2.12 EXPERIMENTAL ERROR
24	2.13 RMS DEVIATION FROM THE MEAN
25	2.114 RMS DEVIATION FOR COIN FLIPPING
27	2.15 ERRORS IN A COIN-FLIPPING EXPERIMENT
28	2.16 ERRORS IN AVERAGES OF REPEATED EXPERIMENTS
30	2.17 PROBABILITY DENSITIES
32	2.18 EXPECTATION VALUES FROM PROBABILITY DENSITIES
34	2.19 GAUSSIAN DISTRIBUTION
35	2.20 EXPECTATION VALUES USING A GAUSSIAN DISTRIBUTION
37	SUMMARY
38	PROBLEMS
42	3 SPECIAL THEORY OF RELATIVITY
42	3.1 CONFLICT BETWEEN ULTIMATE SPEED AND NEWTON'S LAWS

3.2 CLASSICAL MOMENTUM AND ENERGY CONSERVATION—	
CONFLICT WITH EXPERIMENT	43
3.3 CONSERVATION OF MASS—CONFLICT WITH EXPERIMENT	44
3.4 CORRESPONDENCE PRINCIPLE	47
3.5 INERTIAL SYSTEMS	47
3.6 NON-INERTIAL SYSTEMS	49
3.7 AXES RELATIVE TO FIXED STARS	50
3.8 GALILEAN TRANSFORMATIONS	51
3.9 GALILEAN VELOCITY TRANSFORMATIONS	52
3.10 SECOND LAW OF MOTION UNDER GALILEAN	
TRANSFORMATIONS	53
3.11 THIRD LAW UNDER GALILEAN TRANSFORMATIONS	54
3.12 MICHELSON-MORLEY EXPERIMENT	54
3.13 POSTULATES OF RELATIVITY	55
3.14 EXPERIMENTAL EVIDENCE FOR THE SECOND POSTULATE	57
3.15 GALILEAN TRANSFORMATIONS AND THE PRINCIPLE OF	
RELATIVITY	59
3.16 TRANSFORMATION OF LENGTHS PERPENDICULAR TO THE	
RELATIVE VELOCITY	59
3.17 TIME DILATION	60
3.18 LENGTH CONTRACTION	64
3.19 LORENTZ TRANSFORMATIONS	65
3.20 SIMULTANEITY	67
3.21 TRANSFORMATION OF VELOCITIES	71
SUMMARY	74
PROBLEMS	76
4 RELATIVISTIC MECHANICS AND DYNAMICS	79
4.1 LORENTZ TRANSFORMATIONS	79
4.2 DISCREPANCY BETWEEN EXPERIMENT AND NEWTONIAN	
MOMENTUM	80
4.3 MOMENTUM FROM A THOUGHT EXPERIMENT	81
4.4 EXPERIMENTAL VERIFICATION OF MASS FORMULA	83
4.5 RELATIVISTIC SECOND LAW OF MOTION	85
4.6 THIRD LAW OF MOTION AND CONSERVATION OF	٥٦
MOMENTUM 4.7 RFLATIVISTIC FNERGY	85 86
neer need energy	
4.8 KINETIC ENERGY 4.9 POTENTIAL ENERGY AND CONSERVATION OF ENERGY	87 88
4.10 EXPERIMENTAL 'VERIFICATION OF EQUIVALENCE OF MASS	00
AND ENERGY	89
4.11 RELATIONSHIP BETWEEN ENERGY AND MOMENTUM	89
4.12 REST MASS OF Λ^0 FROM EXPERIMENT	90
4.13 TRANSFORMATION PROPERTIES OF ENERGY AND	70
MOMENTUM	96
3 2 2	, ,

4.14 TRANSFORMATIONS FOR FREQUENCY AND WAVELENGTH	99
4.15 TRANSVERSE Döppler effect	101
4.16 LONGITUDINAL DOPPLER EFFECT	102
SUMMARY	104
PROBLEMS	105
5 QUANTUM PROPERTIES OF LIGHT	110
5.1 ENERGY TRANSFORMATION FOR PARTICLES OF ZERO REST	
MASS	111
5.2 FORM-INVARIANCE OF E = $h\nu$	112
5.3 THE DUANE-HUNT LAW	113
5.4 PHOTOELECTRIC EFFECT	115
5.5 COMPTON EFFECT	1119
5.6 PAIR PRODUCTION AND ANNIHILATION	123
5.7 UNCERTAINTY PRINCIPLE FOR LIGHT WAVES	126
5.8 MOMENTUM, POSITION UNCERTAINTY	128
5.9 PROBABILITY INTERPRETATION OF AMPLITUDES	129
SUMMARY	131
PROBLEMS	133
6 MATTER WAVES	136
6.1 Phase of A plane wave	136
6.2 INVARIANCE OF THE PHASE OF .A PLANE WAVE	138
6.3 TRANSFORMATION EQUATIONS FOR WAVEVECTOR A,ND	
FREQUENCY	139
6.4 PHASE SPEED OF DE BROGLIE WAVES	141
6.5 PARTICLE INCIDENT ON INTERFACE SEPARATING DIFFERENT	
POTENTIAL ENERGIES	143
6.6 WAVE RELATION AT INTERFACE	144
6.7 DE BROGLIE RELATIONS	145
6.8 EXPERIMENTAL DETERMINATION OF A	146
6.9 BRAGG EQUATION	147
6.10 DIFFRACTION OF ELECTRONS	148
6.11 UNCERTAINTY PRINCIPLE FOR PARTICLES	152
6.12 UNCERTAINTY AND SINGLE SLIT DIFFRACTION	152
6.13 UNCERTAINTY IN BALANCING AN OBJECT	155
6.14 ENERGY-TIME UNCERTAINTY	155
6.15 PROBABILITY INTERPRETATION OF WAVEFUNCTION	156
6.16 EIGENFUNCTIONS OF ENERGY AND MOMENTUM	
OPERATORS	158
6.17 EXPECTATION VALUES FOR MOMENTUM IN A PARTICLE	
BEAM	160
6.18 OPERATOR FORMALISM FOR CALCULATION OF MOMENTUM	
EXPECTATION VALUES	162
6.19 ENERGY OPERATOR AND EXPECTATION VALUES	164
6.20 SCHRODINGER EQUATION	165

167	6.21 SCHRÖDINGER EQUATION FOR VARIABLE POTENTIAL
	6.22 SOLUTION OF THE SCHRÖDINGER EQUATION FOR A
169	CONSTANT POTENTIAL
170	6.23 BOUNDARY CONDITIONS
172	SUMMARY
175	PROBLEMS
178	7 EXAMPLES OF THE USE OF SCHRÖDINGER'S EQUATION
178	7.1 FREE PARTICLE GAUSSIAN WAVE PACKET
180	7.2 PACKET AT $t = 0$
181	7.3 PACKET FOR $t > 0$
183	7.4 STEP POTENTIAL; HIGH ENERGY $E > V_0$
185	7.5 BEAM OF INCIDENT PARTICLES
186	7.6 TRANSMISSION AND REFLECTION COEFFICIENTS
187	7.7 ENERGY LESS THAN THE STEP HEIGHT
188	7.8 TUNNELING FOR A SQUARE POTENTIAL BARRIER
190	7.9 PARTICLE IN A BOX
.,0	7.10 BOUNDARY CONDITION WHEN POTENTIAL GOES TO
192	INFINITY
192	7.11 STANDING WAVES AND DISCRETE ENERGIES
.,_	7.12 MOMENTUM AND UNCERTAINTY FOR A PARTICLE
194	IN A BOX
195	7.13 LINEAR MOLECULES APPROXIMATED BY PARTICLE IN A BOX
196	7.14 HARMONIC OSCILLATOR
170	7.15 GENERAL WAVEFUNCTION AND ENERGY FOR THE
198	HARMONIC OSCILLATOR
170	7.16 COMPARISON OF QUANTUM AND NEWTONIAN
204	MECHANICS FOR THE HARMONIC OSCILLATOR
207	7.17 CORRESPONDENCE PRINCIPLE IN QUANTUM THEORY
208	SUMMARY
209	PROBLEMS
213	8 HYDROGEN ATOM AND ANGULAR MOMENTUM
213	8.1 PARTICLE IN A BOX
213	8.2 BALMER'S EXPERIMENTAL FORMULA FOR THE HYDROGEN
215	SPECTRUM
216	8.3 SPECTRAL SERIES FOR HYDROGEN
217	8.4 BOHR MODEL FOR HYDROGEN
217	8.5 QUANTIZATION IN THE BOHR MODEL
220	
	8.6 REDUCED MASS 8.7 SCHRÖDINGER EQUATION FOR HYDROGEN
221	
222	8.8 PHYSICAL INTERPRETATION OF DERIVATIVES WITH RESPECT
223	TO r
225	8.9 SOLUTIONS OF THE SCHRÖDINGER EQUATION
230	8.10 BINDING ENERGY AND IONIZATION ENERGY
230	8.11 ANGULAR MOMENTUM IN QUANTUM MECHANICS
231	8.12 ANGULAR MOMENTUM COMPONENTS IN SPHERICAL
∠ 3 I	COORDINATES

Confentaciji

8.13 EIGENFUNCTIONS OF L_z ; AZIMUTHAL QUANTUM NUMBER	232
8.14 SQUARE OF THE TOTAL ANGULAR MOMENTUM	233
8.15 LEGENDRE POLYNOMIALS	234
8.16 SUMMARY OF QUANTUM NUMBERS FOR THE	
HYDROGEN ATOM	235
8.17 ZEEMAN EFFECT	236
8.18 SPLITTING OF LEVELS IN A MAGNETIC FIELD	237
8.19 SELECTION RULES	238
8.20 NORMAL ZEEMAN SPLITTING	239
8.21 ELECTRON SPIN	240
8.22 SPIN-ORBIT INTERACTION	240
8.23 HALF-INTEGRAL SPINS	241
8.24 STERN-GERLACH EXPERIMENT	242
8.25 SUMS OF ANGULAR MOMENTA	242
8.26 ANOMALOUS ZEEMAN EFFECT	243
8.27 RIGID DIATOMIC ROTATOR	244
SUMMARY	246
PROBLEMS	249
9 PAULI EXCLUSION PRINCIPLE AND THE PERIODIC TABLE	254
9.1 DESIGNATION OF ATOMIC STATES	255
9.2 NUMBER OF STATES IN AN n SHELL 9.3 INDISTINGUISHABILITY OF PARTICLES	256
9.3 INDISTINGUISHABILITY OF PARTICLES 9.4 PAULI EXCLUSION PRINCIPLE	256
	258
9.5 EXCLUSION PRINCIPLE AND ATOMIC ELECTRON STATES 9.6 ELECTRON CONFIGURATIONS	260 262
9.7 INERT GASES	263
9.8 HALOGENS	265
9.9 ALKALI METALS	265
9.10 PERIODIC TABLE OF THE ELEMENTS	266
9.1] X-RAYS	270
9.12 ORTHO- AND PARA-HYDROGEN	273
SUMMARY	273
PROBLEMS	275
10 CLASSICAL STATISTICAL MECHANICS	279
10.1 PROBABILITY DISTRIBUTION IN ENERGY FOR SYSTEMS IN	
THERMAL EQUILIBRIUM	280
10.2 BOLTZMANN DISTRIBUTION	281
10.3 PROOF THAT P(E) IS OF EXPONENTIAL FORM	282
10.4 PHASE SPACE	283
10.5 PHASE SPACE DISTRIBUTION FUNCTIONS	285
10.6 MAXWELL-BOLTZMANN DISTRIBUTION	287
10.7 EVALUATION OF eta	288
10.8 EVALUATION OF $NP(O) ho$	291
10.9 MAXWELL-BOLTZMANN DISTRIBUTION INCLUDING	
POTENTIAL ENERGY	292
10.10 GAS IN A GRAVITATIONAL FIELD	293

10.11 DISCRETE ENERGIES	294
10.12 DISTRIBUTION OF THE MAGNITUDE OF MOMENTUM	295
10.13 EXPERIMENTAL VERIFICATION OF MAXWELL DISTRIBUTION	296
10.14 DISTRIBUTION OF ONE COMPONENT OF MOMENTUM	298
10.15 SIMPLE HARMONIC OSCILLATORS	300
10.16 DETAILED BALANCE	303
10.17 TIME REVERSIBILITY	305
SUMMARY	306
PROBLEMS	308
1 ROBELWIS	
11 QUANTUM STATISTICAL MECHANICS	312
11.1 EFFECTS OF THE EXCLUSION PRINCIPLE ON STATISTICS	
OF PARTICLES	313
11.2 DETAILED BALANCE AND FERMI-DIRAC PARTICLES	313
11.3 FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION	315
11.4 ONE DIMENSIONAL DENSITY OF STATES FOR PERIODIC	
BOUNDARY CONDITIONS	316
11.5 DENSITY OF STATES IN THREE DIMENSIONS	318
11.6 COMPARISON BETWEEN THE CLASSICAL AND QUANTUM	
DENSITIES OF STATES	319
11.7 EFFECT OF SPIN ON THE DENSITY OF STATES	320
11.8 NUMBER OF STATES PIER UNIT ENERGY INTERVAL	320
11.9 FREE PARTICLE FERMI ENERGY-NONDEGENERATE CASE	321
11.10 FREE ELECTRONS IN METALS-DEGENERATE CASE	323
11.11 HEAT CAPACITY OF AN ELECTRON GAS	324
11.12 WORK FUNCTION	325
11 , 3 PHOTON DISTRIBUTION	326
11.14 PLANCK RADIATION FORMULA	328
11 .]5 SPONTANEOUS EMISSION	331
11.16 RELATIONSHIP BETWEEN SPONTANEOUS AND STIMULATED	
EMISSION	332
11.17 ORIGIN OF THE FACTOR 1 + n_i IN BOSON TRANSITIONS	333
1 1.18 BOSE-EINSTEIN DISTRIBUTION FUNCTION	335
SUMMARY	336
PROBLEMS	338
112 SOLID STATE PHYSICS	341
12.1 CLASSIFICATION OF CRYSTALS	341
12.2 REFLECTION AND ROTATION SYMMETRIES	342
12.3 CRYSTAL BINDING FORCES	346
12.4 SOUND WAVES IN A CONTINUOUS MEDIUM	347
12.5 WAVE EQUATION FOR SOUND WAVES IN A DISCRETE	0.15
MEDIUM	349
12.6 SOLUTIONS OF THE WAVE EQUATION FOR THE DISCRETE	_
MEDIUM	351
12.7 NUMBER OF SOLUTIONS	352

12.8 LINEAR CHAIN WITH TWO MASSES PER UNIT CELL

354

12.9 ACOUSTIC AND OPTICAL BRANCHES	356
12.10 ENERGY OF LATTICE VIBRATIONS	357
12.11 ENERGY FOR A SUPERPOSITION OF MODES	359
12.12 QUANTUM THEORY OF HARMONIC OSCILLATORS AND	
LATTICE VIBRATIONS	360
12.13 PHONONS; AVERAGE ENERGY PER MODE AS A FUNCTION	
OF TEMPERATURE	361
12.14 LATTICE SPECIFIC HEAT OF A SOLID	362
12.15 ENERGY BANDS OF ELECTRONS IN CRYSTALS	364
12.16 BLOCH'S THEOREM	365
12.17 NUMBER OF BLOCH FUNCTIONS PER BAND	366
12.18 TYPES OF BANDS	367
12.19 EFFECTIVE MASS IN A BAND	368
12.20 CONDIJCTORS, INSULATORS, SEMICONDUCTORS	369
12.21 HOLES	371
12.22 n-TYPE AND p-TYPE SEMICONDUCTORS	372
'12.23 HALL EFFECT	373
SUMMARY	374
PROBLEMS	377
13 PROBING THE NUCLEUS	381
13.1 A NUCLEAR MODEL	381
13.2 LIMITATIONS ON NUCLEAR SIZE FROM ATOMIC	
CONSIDERATIONS	383
13.3 SCATTERING EXPERIMENTS	385
13.4 CROSS-SECTIONS	386
13.5 DIFFERENTIAL CROSS-SECTIONS	387
13.6 NUMBER OF SCATTERERS PER UNIT AREA	390
13.7 BARN AS A UNIT OF CROSS-SECTION	390
13.8 $lpha$ AND eta PARTICLES	391
13.9 RUTHERFORD MODEL OF THE ATOM	393
13.10 RUTHERFORD THEORY; EQUATION OF ORBIT	394
113.11 RUTHERFORD SCATTERING ANGLE	395
13.12 RUTHERFORD DIFFERENTIAL CROSS-SECTION	397
13.13 MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION	398
13.14 EXPERIMENTAL VERIFICATION OF THE RLJTHERFORD	
SCATTERING FORMULA	400
13.15 PARTICLE ACCELERATORS	402
SUMMARY	404
PROBLEMS	405
14 NUCLEAR STRUCTURE	408
14.1 NUCLEAR MASSES	408
14.2 NEUTRONS IN THE NUCLEUS	410
14.3 PROPERTIES OF THE NEUTRON AND PROTON	411
14.4 THE DEUTERON $(_1H^2)$	414
14 E NUCLEAR FORCES	116

14.6 YUKAWA FORCES 418

14.7 MODELS OF THE NUCLEUS	421
SUMMARY	427
PROBLEMS	429
15 TRANSFORMATION OF THE NUCLEUS	431
15.1 LAW OF RADIOACTIVE DECAY	431
15.2 HALF-LIFE	433
15.3 LAW OF DECAY FOR UNSTABLE DAUGHTER NUCLEI	433
15.4 RADIOACTIVE SERIES	433
15.5 ALPHA-PARTICLE DECAY	441
15.6 THEORY OF ALPHA-DECAY	443
15.7 BETA DECAY	447
15.8 PHASE SPACE AND THE: THEORY OF BETA DECAY	450
15.9 ENERGY IN eta^+ DECAY	452
15.10 ELECTRON CAPTURE	453
15.11 GAMMA DECAY AND INTERNAL CONVERSION	454
15.12 LOW ENERGY NUCLEAR REACTIONS	454
15.13 THRESHOLD ENERGY	456
15.14 NUCLEAR FISSION AND FUSION	457
15.15 RADIOACTIVE CARBON DATING	458
SUMMARY	458
PROBLEMS	461
16 ELEMENTARY PARTICLES	464
16.1 LEPTONS	464
16.2 MESONS	466
16.3 BARYONS	467
16.4 CONSERVATION LAWS	468
16.5 DETECTION OF PARTICLES	472
16.6 HYPERCHARGE, ISOTOPIC SPIN PLOTS	473
16.7 QUARKS	474
16.8 MESONS IN TERMS OF QUARKS	477
SUMMARY	478
PROBLEMS	479
APPENDICES	
APPENDIX 1	483
APPENDIX 2	491
APPENDIX 3	496
APPENDIX 4	504
BIBLIOGRAPHY	505

INDEX

507