CONTENTS

1 MATHEMATICAL PRELIMINARIES

1.1 Invariants	1
1.2 Some geometrical invariants	2
1.3 Elements of differential geometry	5
1.4 Gaussian coordinates and the invariant line element	7
1.5 Geometry and groups	10
1.6 Vectors	13
1.7 Quaternions	13
1.8 3-vector analysis	16
1.9 Linear algebra and n-vectors	18
1.10 The geometry of vectors	21
1.11 Linear operators and matrices	24
1.12 Rotation operators	25
1.13 Components of a vector under coordinate rotations	27

2 KINEMATICS: THE GEOMETRY OF MOTION

2.1	Velocity and acceleration	33
2.2	Differential equations of kinematics	36
2.3	Velocity in Cartesian and polar coordinates	39
2.4	Acceleration in Cartesian and polar coordinates	41

3 CLASSICAL AND SPECIAL RELATIVITY

3.1	The Galilean transformation	46
3.2	Einstein's space-time symmetry: the Lorentz transformation	48
3.3	The invariant interval: contravariant and covariant vectors	51
3.4	The group structure of Lorentz transformations	53
3.5	The rotation group	56
3.6	The relativity of simultaneity: time dilation and length contraction	57
3.7	The 4-velocity	61

4 NEWTONIAN DYNAMICS

4.1	The law of inertia	65
4.2	Newton's laws of motion	67
4.3	Systems of many interacting particles: conservation of linear and angular	

	momentum	68
4.4	Work and energy in Newtonian dynamics	74
4.5	Potential energy	76
4.6	Particle interactions	79
4.7	The motion of rigid bodies	84
4.8	Angular velocity and the instantaneous center of rotation	86
4.9	An application of the Newtonian method	88

5 INVARIANCE PRINCIPLES AND CONSERVATION LAWS

5.1	Invariance of the potential under translations and the conservation of linear	
	momentum	94
5.2	Invariance of the potential under rotations and the conservation of angular	
	momentum	94

6 EINSTEINIAN DYNAMICS

6.1	4-momentum and the energy-momentum invariant	97
6.2	The relativistic Doppler shift	98
6.3	Relativistic collisions and the conservation of 4- momentum	99
6.4	Relativistic inelastic collisions	102
6.5	The Mandelstam variables	103
6.6	Positron-electron annihilation-in-flight	106

7 NEWTONIAN GRAVITATION

7.1	Properties of motion along curved paths in the plane	111
7.2	An overview of Newtonian gravitation	113
7.3	Gravitation: an example of a central force	118
7.4	Motion under a central force and the conservation of angular momentum	120
7.5	Kepler's 2nd law explained	120
7.6	Central orbits	121
7.7	Bound and unbound orbits	126
7.8	The concept of the gravitational field	128
7.9	The gravitational potential	131

8 EINSTEINIAN GRAVITATION: AN INTRODUCTION TO GENERAL RELATIVITY

8.1	The principle of equivalence	136
8.2	Time and length changes in a gravitational field	138
8.3	The Schwarzschild line element	138
8.4	The metric in the presence of matter	141
8.5	The weak field approximation	142

8.6 The refractive index of space-time in the presence of mass8.7 The deflection of light grazing the sun	143 144
9 AN INTRODUCTION TO THE CALCULUS OF VARIATIONS	
9.1 The Euler equation9.2 The Lagrange equations9.3 The Hamilton equations	149 151 153
10 CONSERVATION LAWS, AGAIN	
10.1 The conservation of mechanical energy10.2 The conservation of linear and angular momentum	158 158
11 CHAOS	
11.1 The general motion of a damped, driven pendulum 11.2 The numerical solution of differential equations	161 163
12 WAVE MOTION	
 12.1 The basic form of a wave 12.2 The general wave equation 12.3 The Lorentz invariant phase of a wave and the relativistic Doppler shift 12.4 Plane harmonic waves 12.5 Spherical waves 12.6 The superposition of harmonic waves 12.7 Standing waves 	167 170 171 173 174 176 177
13 ORTHOGONAL FUNCTIONS AND FOURIER SERIES	
13.1 Definitions13.2 Some trigonometric identities and their Fourier series13.3 Determination of the Fourier coefficients of a function13.4 The Fourier series of a periodic saw-tooth waveform	179 180 182 183
APPENDIX A SOLVING ORDINARY DIFFERENTIAL EQUATIONS	187
BIBLIOGRAPHY	198