CONTENTS

	PREFACE	(v)
1.	COMPUTER INTEGRATED MANUFACTURING	1
	1.1 INTRODUCTION	1
	1.2 TYPES OF MANUFACTURING	3
	1.3 EVOLUTION OF COMPUTER INTEGRATED MANUFACTURING	4
	1.4 CIM HARDWARE AND CIM SOFTWARE	6
	1.5 NATURE AND ROLE OF THE ELEMENTS OF CIM SYSTEM	7
	1.6 DEVELOPMENT OF CIM	10
2.	PRODUCT DEVELOPMENT THROUGH CIM	13
	2.1 INTRODUCTION	13
	2.2 PRODUCT DEVELOPMENT CYCLE	13
	2.3 SEQUENTIAL ENGINEERING	16
	2.4 CONCURRENT ENGINEERING	18
	2.5 COMPARISON OF CONCURRENT ENGINEERING AND SEQUENTIAL ENGINEERING	19
	2.6 IMPLEMENTATION OF CONCURRENT ENGINEERING	21
	2.7 CONCURRENT ENGINEERING AND INFORMATION TECHNOLOGY	23
	2.8 SOFT AND HARD PROTOTYPING	25
	2.9 CHARACTERISTICS OF CONCURRENT ENGINEERING	25
	2.10 KEY FACTORS INFLUENCING THE SUCCESS OF CE	26
	2.11 EXAMPLE OF CONCURRENT ENGINEERING	26
	2.12 TECHNIQUES TO IMPROVE MANUFACTURABILITY AND REDUCE LEAD TIME	27
	2.13 IMPROVING THE DESIGN	32
	2.14 TAGUCHI METHOD FOR ROBUST DESIGN	34
	2.15 VALUE ENGINEERING	34
	2.16 PRODUCT LIFE CYCLE MANAGEMENT	35

<u>viii</u> Contents

3. PRINCIPLES OF COMPUTER GRAPHICS	41
3.1 INTRODUCTION	41
3.2 GRAPHIC PRIMITIVES	42
3.3 POINT PLOTTING	43
3.4 DRAWING OF LINES	43
3.5 BRESENHAM'S CIRCLE ALGORITHM	47
3.6 ELLIPSE	55
3.7 TRANSFORMATION IN GRAPHICS	55
3.8 CO-ORDINATE SYSTEMS USED IN GRAPHICS AND WINDOWING	55
3.9 VIEW PORT	56
3.10 2-D TRANSFORMATIONS	56
3.11 HOMOGENEOUS TRANSFORMATIONS	60
3.12 COMBINATION TRANSFORMATIONS	61
3.13 CLIPPING	63
3.14 3-DIMENSIONAL TRANSFORMATIONS	63
3.15 PROJECTIONS	64
3.16 SCAN CONVERSION	66
3.17 RENDERING	69
3.18 RASTERIZING POLYGONS	69
3.19 HIDDEN SURFACE REMOVAL	<i>70</i>
3.20 ANTI ALIASING	<i>7</i> 2
3.21 REFLECTION 3.22 SHADING	73 75
3.23 GENERATION OF CHARACTERS	73 76
5.25 GENERATION OF CHARACTERS	70
1. COMPUTER HARDWARE	77
4.1 INTRODUCTION	77
4.2 COMPUTER FUNDAMENTALS	<i>78</i>
4.3 CLASSIFICATION OF COMPUTERS	<i>7</i> 9
4.4 DATA COMMUNICATIONS	83
4.5 DESIGN WORK STATIONS	89
4.6 ARCHITECTURE OF A TYPICAL GRAPHICS WORKSTATION	90
4.7 INTERACTIVE DISPLAY DEVICES	93
4.8 INPUT DEVICES	97
4.9 OUTPUT DEVICES	100
5. OPERATING SYSTEMS AND ENVIRONMENTS	103
5.1 INTRODUCTION	103
5.2 OPERATING SYSTEM (OS)	104
5.3 COMPARISON OF COMMANDS IN POPULAR OPERATING SYSTEMS	106
5.4 UNIX - OPERATING SYSTEM	108
5.5 ARCHITECTURE OF UNIX SYSTEM	109

Contents	
5.6 GRAPHICAL USER INTERFACES (WINDOWS ENVIRONMENT)	113
5.7 MS WINDOWS	114
5.8 WINDOWS NT	115
5.9 LINUX	120
6. GEOMETRIC MODELING TECHNIQUES	121
6.1 INTRODUCTION	121
6.2 GEOMETRIC MODELING	123
6.3 SALIENT FEATURES OF SOLID MODELING	128
6.4 COMMAND, MENU AND ICON DRIVEN SOFTWARES	136
6.5 FEATURES OF A DRAFTING PACKAGE	138
6.6 DRAWING UTILITIES	139
6.7 ENTITIES	142
6.8 EDIT COMMANDS	143
6.9 BLOCKS AND SYMBOLS	143
6.10 DISPLAY	144
6.11 CROSS HATCHING AND PATTERN FILLING	144
6.12 DIMENSIONING	145
6.13 ENQUIRY COMMANDS	146
6.14 3-D DRAWINGS	147
6.15 PLOTTING A DRAWING	149
6.16 CONFIGURING THE DRAFTING SOFTWARE	149
6.17 CUSTOMISATION	149
6.18 DRAWING INTERCHANGE FILES	150
6.19 DRAWING OFFICE MANAGEMENT	150
6.20 SURFACE MODELING	152
6.21 REPRESENTATION OF CURVES AND SURFACES	154
6.22 DESIGN OF CURVED SHAPES	155
6.23 CUBIC SPLINES	156
6.24 BEZIER CURVES 6.25 B-SPLINES	159 161
6.26 NURBS AND B-SPLINES	162
6.27 REPRESENTATION OF SURFACES	163
6.28 DESIGN OF SURFACES	163
6.29 PARAMETRIC DESIGN OF SURFACES	163
6.30 BICUBIC POLYNOMIAL SURFACE PATCHES	164
6.31 BEZIER BICUBIC SURFACE PATCHES	165
6.32 CUBIC B-SPLINE SURFACES	166
6.33 SURFACE MODELING IN COMMERCIAL DRAFTING AND MODELING SOFTWARE	166
6.34 THE CONCEPTUAL DESIGN PROCESS	174
6.35 SKETCHING THE GEOMETRY	176
6.36 UNDERSTANDING CURVE AND SURFACE DESIGN	1 <i>77</i>
6.37 OTHER FEATURES USEFUL FOR CONCEPTUAL DESIGN	185
6 38 DATA TRANSFER TO OTHER SOFTWARES	185

x Contents

7. FINITE ELEMENT MODELING AND ANALYSIS IN CIM	189
7.1 INTRODUCTION	189
7.2 GENERAL STEPS INVOLVED IN FINITE ELEMENT ANALYSIS	191
7.3 TYPES OF ANALYSIS	193
7.4 DEGREES OF FREEDOM	195
7.5 INFLUENCE COEFFICIENTS	196
7.6 ELEMENT AND STRUCTURE STIFFNESS EQUATIONS	196
7.7 ASSEMBLY OF ELEMENTS	212
7.8 FINITE ELEMENT ANALYSIS PACKAGES	215
7.9 GENERAL STRUCTURE OF A FINITE ELEMENT ANALYSIS PROCEDURE	216
7.10 ARCHITECTURE OF FINITE ELEMENT SOFTWARE	221
7.11 USING A FINITE ELEMENT ANALYSIS PACKAGE FOR SIMPLE PROBLEMS	222
7.12 ELEMENTS IN A FINITE ELEMENT ANALYSIS SOFTWARE	223
7.13 EXAMPLES OF SOLUTION USING A SOFTWARE	228
7.14 MANUFACTURING APPLICATIONS	242
7.15 WELDING SIMULATION	243
7.16 FINITE ELEMENT ANALYSIS APPLICATIONS TO METAL FORMING	244
7.17 SIMULATION OF HEAT TRATMENT	245
7.18 PLASTIC INJECTION MOLDING	245
8. CIM DATA BASE AND DATA BASE MANAGEMENT SYSTEMS	247
8.1 INTRODUCTION	247
8.2 DATABASE REQUIREMENTS OF CIM	249
8.3 DATA BASE	249
8.4 DATABASE MANAGEMENT	251
8.5 FEATURES OF A DATABASE MANAGEMENT SYSTEM	251
8.6 DATABASE MODELS	252
8.7 DBMS ARCHITECTURE	255
8.8 QUERY LANGUAGE	255
8.9 STRUCTURED QUERY LANGUAGE [SQL]	256
8.10 SQL AS A KNOWLEDGE BASE QUERY LANGUAGE	257
8.11 PRODUCT DATA MANAGEMENT (PDM)	258
8.12 ADVANTAGES OF PDM	260
9. COMPUTER AIDED PROCESS PLANNING	263
9.1 INTRODUCTION	263
9.2 PROCESS PLANNING	263
9.3 STRUCTURE OF A PROCESS PLANNING SOFTWARE	266
9.4 INFORMATION REQUIRED FOR PROCESS PLANNING	266
9.5 OPERATION OF A TYPICAL COMPUTER AIDED PROCESS PLANNING SOFTWARE	267
9.6 CAD BASED PROCESS PLANNING - CERTAIN LIMITATIONS AND PROBLEMS	270
9.7 GROUP TECHNOLOGY	272

Contents	xi
9.8 CODING STRUCTURES	274
9.9 OPITZ CLASSIFICATION SYSTEM	275
9.10 THE MICLASS SYSTEM	277
9.11 THE CODE SYSTEM	277
9.12 BENEFITS OF GROUP TECHNOLOGY	277
9.13 PROCESS SELECTION	279
9.14 EXPERIENCE-BASED PLANNING	<i>279</i>
9.15 HAND BOOKS/DATA BOOKS/MANUALS	280
9.16 DECISION TABLES AND DECISION TREES	280
9.17 PROCESS CAPABILITY	280
9.18 METHODS OF COMPUTER AIDED PROCESS PLANNING	282
9.19 VARIANT PROCESS PLANNING	282
9.20 GENERATIVE PROCESS PLANNING	284
9.21 IMPLEMENTATION CONSIDERATIONS	288
9.22 PROCESS PLANNING SYSTEMS	289
10. PLANNING OF RESOURCES FOR MANUFACTURING THRO	OUGH
INFORMATION SYSTEMS	293
10.1 INTRODUCTION	293
10.2 BACKGROUND	294
10.3 ROLE OF MRP-II IN A CIM SYSTEM	295
10.4 MAJOR MODULES OF A MANUFACTURING RESOURCES PLANNING (MR.	P) SOFTWARE 296
10.5 MANUFACTURING APPLICATIONS	296
10.6 ENGINEERING APPLICATIONS	304
10.7 FINANCIAL APPLICATIONS	307
10.8 MARKETING APPLICATIONS	311
10.9 MISCELLANEOUS APPLICATIONS	313
10.10 COMMON ACRONYMS USED IN AN MRP-II ENVIRONMENT	314
10.11 STATUS OF MRP-II SOFTWARE	314
10.12 DYNAMIC ENTERPRISES	315
10.13 ENTERPRISE RESOURCE PLANNING (ERP)	316
10.14 SUPPLY CHAIN MANAGEMENT	320
10.15 VIRTUAL MANUFACTURING	322
10.16 SELECTION OF AN ERP PACKAGE	322
10.17 ERP IN INDIA	323
10.18 DYNAMIC ENTERPRISE MODELLING (DEM)	323
11. MANUFACTURING AUTOMATION	327
11.1 INTRODUCTION	327
11.2 TYPES OF AUTOMATION SYSTEMS	328
11.3 PROGRAMMABLE LOGIC CONTROLLERS	329
11.4 PARTS OF A TYPICAL PLC SYSTEM	332
11.5 OPERATION OF A PLC	333

xii Contents

11 / PROCEEDINGS OF PRO	222
11.6 PROGRAMMING OF PLC	333
11.7 EXAMPLE OF APPLICATION OF PLC IN A CNC MACHINE 11.8 FACTORY LEVEL CONTROL	335 338
TT.8 TACTORT LEVEL CONTROL	330
12. CNC MACHINE TOOLS	341
12.1 INTRODUCTION	341
12.2 PRINCIPLE OF OPERATION OF A NUMERICAL CONTROLLED MACHINE	342
12.3 HISTORICAL DEVELOPMENT	351
12.4 TYPES OF CNC MACHINES	353
12.5 FEATURES OF CNC SYSTEMS	<i>373</i>
12.6 DIRECT NUMERICAL CONTROL (DNC)	<i>379</i>
12.7 FUNCTIONS AVAILABLE IN A TYPICAL CNC SYSTEM	384
12.8 STANDARD CONTROLLERS	386
12.9 SOME OF THE FEATURES AVAILABLE IN TYPICAL HIGH END CNC SYSTEM	387
12.10 GENERAL PROGRAMMING FEATURES OF CNC SYSTEMS	389
12.11 PROGRAMMING OF CNC MACHINE TOOLS	403
12.12 HINTS FOR PROGRAMMING	414
12.13 EXAMPLE OF PROGRAMMING A VERTICAL MACHINING CENTRE	423
12.14 CNC TURNING A GEAR BLANK	431
12.15 CNC TURNING A CASTING	442
12.16 CNC PROGRAM DEVELOPMENT AND VIRTUAL MACHINING USING CAM TECHNOLOGY	451
12.17 TECHNOLOGY OF CAM	454
12.18 PROCEDURE OF CAM	455
12.19 MANUFACTURING OPERATIONS	459
12.20 TOOL MOTION PARAMETERS	462
12.21 AUXILIARY NC SEQUENCES	463
12.22 CL DATA FILES	463
12.23 NC POST-PROCESSING	464
12.24 VIRTUAL MACHINING	464
12.25 SUMMARY	465
13. ROBOTS IN COMPUTER INTEGRATED MANUFACTURING	471
13.1 INTRODUCTION	471
13.2 DEFINITION OF A ROBOT	 472
13.3 TYPES OF ROBOTS	474
13.4 PERFORMANCE CAPABILITIES	481
13.5 PROGRAMMING ROBOTS	484
13.6 GEOMETRIC REQUIREMENTS FOR THE CAD/ROBOT LINKAGE	493
13.7 SIMULATION	494
13.8 ADAPTIVE CONTROL	494
13.9 ROBOT OPERATION	495

Conter	nts	xiii
	13.10 ENDS-OF-ARM-TOOLING	496
	13.11 CONTROL SYSTEM OPERATION	496
	13.12 APPLICATIONS OF INDUSTRIAL ROBOTS	496
	13.13 THE INTEGRATION OF THE INDUSTRIAL ROBOT INTO A CIM SYSTEM	500
	13.14 PRESENTATION OF WORK TO ROBOTS	501
	13.15 PRODUCT DESIGN FOR AUTOMATIC MANUFACTURE BY ROBOTS	501
	13.16 MANUFACTURERS OF ROBOTS	502
14.	COMPUTER AIDED QUALITY CONTROL	505
	14.1 INTRODUCTION	505
	14.2 TOTAL QUALITY MANAGEMENT (TQM)	506
	14.3 QC AND CIM	507
	14.4 INSPECTION AND TESTING	508
	14.5 STATISTICAL PROCESS CONTROL (SPC)	509
	14.6 OBJECTIVES OF CAQC	509
	14.7 ROLE OF COMPUTER IN QC	509
	14.8 COORDINATE MEASURING MACHINE	510
	14.9 NON-CONTACT INSPECTION METHODS	512
	14.10 POST PROCESS METROLOGY	516
	14.11 COMPUTER AIDED INSPECTION USING ROBOTS	<i>517</i>
	14.12 INTEGRATED COMPUTER AIDED INSPECTION SYSTEMS	518
	14.13 FLEXIBLE INSPECTION SYSTEM (FIS)	520
15.	FUNDAMENTALS OF NETWORKING	523
	15.1 INTRODUCTION	523
	15.2 PRINCIPLES OF NETWORKING	523
	15.3 NETWORK TECHNIQUES	526
	15.4 LOCAL AREA NETWORK (LAN)	526
	15.5 COMPONENTS OF A SMALL LOCAL AREA NETWORK	528
	15.6 NETWORK WIRING METHODS	529
	15.7 NETWORK INTERFACE CARDS	532
	15.8 NETWORKING STANDARDS AND THEIR DEVELOPMENT	533
	15.9 EXAMPLES OF NETWORK STANDARDS	536
	15.10 ETHERNET	537
	15.11 ISSUES IN INTER-SYSTEM COMMUNICATION	538
	15.12 NETWORK OPERATING SYSTEMS	540
	15.13 SYSTEM SECURITY	541
	15.14 MANAGING REMOTE SYSTEMS IN A NETWORK	541
	15.15 DESIGN ACTIVITY IN A NETWORKED ENVIRONMENT	542
	15.16 ENGINEERING CHANGE CONTROL	542
	15.17 NETWORKING IN A MANUFACTURING COMPANY	542
	15 18 NETWORK FILE SYSTEM INIES!	543

xiv	Contents
-----	----------

15.19 INTERNET	548
15.20 HARDWARE ELEMENTS OF A NETWORK	551
15.21 ATM (ASYNCHRONOUS TRANSFER MODE) NETWORKS	554
15.22 ENTERPRISE WIDE NETWORK	555
15.23 DOCUMENT AND WORKFLOW MANAGEMENT SYSTEM	557
15.24 A CASE STUDY OF APPLICATION OF GLOBAL NETWORKING	562
16. COLLABORATIVE ENGINEERING	565
16.1 INTRODUCTION	565
16.2 FASTER DESIGN THRUOGHPUT	566
16.3 WEB BASED DESIGN	567
16.4 CHANGING DESIGN APPROACHES	568
16.5 EXTENDED ENTERPRISES	571
16.6 SOFTWARE FOR COLLABORATIVE DESIGN AND ENTERPRISE-WIDE PRODUCT	
VISUALIZATION	<i>572</i>
17. GRAPHIC STANDARDS	575
17.1 INTRODUCTION	<i>575</i>
17.2 STANDARDS FOR GRAPHICS PROGRAMMING	<i>576</i>
17.3 FEATURES OF GKS	<i>576</i>
17.4 OTHER GRAPHICS STANDARDS	<i>578</i>
17.5 PHIGS	<i>578</i>
17.6 OPENGL	580
17.7 PARASOLID	581
17.8 ACIS	583
17.9 EXCHANGE OF CAD DATA BETWEEN SOFTWARE PACKAGES	584
17.10 DXF FILES	585
17.11 INITIAL GRAPHICS EXCHANGE SPECIFICATION (IGES) GRAPHICS STANDARD	587
17.12 PRODUCT DATA EXCHANGE SPECIFICATION (PDES)	590
17.13 OTHER DATA EXCHANGE FORMATS	590
17.1.4 PRODUCT DATA TECHNOLOGY SUPPORT FOR COMPUTER AIDED CONCURRENT ENGINEERING	590
18. CIM MODELS	597
18.1 INTRODUCTION	597
18.2 ESPRIT - CIM OSA MODEL	<i>599</i>
18.3 THE NIST - AMRF HIERARCHICAL MODEL	601
18.4 THE SIEMENS MODEL OF CIM	602
18.5 THE CIM MODEL OF CIMI	603
18.6 THE IBM CONCEPT OF CIM	604
18.7 PRESENT SCENARIO	607
	507

Contents

19.	FLEXIBLE MANUFACTURING SYSTEMS	609
	19.1 INTRODUCTION	609
	19.2 SUBSYSTEMS OF FMS	610
	19.3 SCOPE OF FMS	611
	19.4 FMS COMPARED TO OTHER TYPES OF MANUFACTURING APPROACHES	611
	19.5 TYPES OF FMS	612
	19.6 BENEFITS OF FMS	620
	19.7 MAJOR ELEMENTS OF FMS	622
	19.8 OPTIMISATION OF FMS	627
	19.9 OPERATIONAL ELEMENTS OF A TYPICAL FLEXIBLE MANUFACTURING CELL	628
	19.10 TYPICAL FMS LAYOUT	638
	19.11 FMS DEVELOPMENT IN INDIA	639
20.	SHOP FLOOR DATA COLLECTION SYSTEMS	641
	20.1 INTRODUCTION	641
	20.2 SHOP FLOOR CONTROL	643
	20.3 SHOP FLOOR DATA COLLECTION	646
	20.4 TYPES OF DATA COLLECTION SYSTEMS	646
	20.5 DATA INPUT TECHNIQUES	647
	20.6 AUTOMATIC DATA COLLECTION SYSTEM	648
	20.7 BAR CODE TECHNOLOGY	648
	20.8 OPTICAL CHARACTER RECOGNITION	650
	20.9 MAGNETIC INK CHARACTER RECOGNITION	651
	20.10 VOICE RECOGNITION	651
	20.11 SMART CARDS	651
	20.12 DATA ACQUISITION SYSTEMS (DAS)	652
21.	SIMULATION IN MANUFACTURING	653
	21.1 INTRODUCTION	653
	21.2 TYPES OF SIMULATION	654
	21.3 TECHNIQUES OF SIMULATION	655
	21.4 SIMULATION PROCESS FOR MANUFACTURING SYSTEMS ANALYSIS	656
	21.5 SIMULATION SOFTWARE PACKAGES	656
	21.6 APPLICATION OF SIMULATION	657
	21.7 PROCEDURE FOR SIMULATION USING SOFTWARE	659
	INDEX	667